• Title/Summary/Keyword: head measurements

Search Result 479, Processing Time 0.027 seconds

High-Resolution Numerical Simulation of Respiration-Induced Dynamic B0 Shift in the Head in High-Field MRI

  • Lee, So-Hee;Barg, Ji-Seong;Yeo, Seok-Jin;Lee, Seung-Kyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.38-45
    • /
    • 2019
  • Purpose: To demonstrate the high-resolution numerical simulation of the respiration-induced dynamic $B_0$ shift in the head using generalized susceptibility voxel convolution (gSVC). Materials and Methods: Previous dynamic $B_0$ simulation research has been limited to low-resolution numerical models due to the large computational demands of conventional Fourier-based $B_0$ calculation methods. Here, we show that a recently-proposed gSVC method can simulate dynamic $B_0$ maps from a realistic breathing human body model with high spatiotemporal resolution in a time-efficient manner. For a human body model, we used the Extended Cardiac And Torso (XCAT) phantom originally developed for computed tomography. The spatial resolution (voxel size) was kept isotropic and varied from 1 to 10 mm. We calculated $B_0$ maps in the brain of the model at 10 equally spaced points in a respiration cycle and analyzed the spatial gradients of each of them. The results were compared with experimental measurements in the literature. Results: The simulation predicted a maximum temporal variation of the $B_0$ shift in the brain of about 7 Hz at 7T. The magnitudes of the respiration-induced $B_0$ gradient in the x (right/left), y (anterior/posterior), and z (head/feet) directions determined by volumetric linear fitting, were < 0.01 Hz/cm, 0.18 Hz/cm, and 0.26 Hz/cm, respectively. These compared favorably with previous reports. We found that simulation voxel sizes greater than 5 mm can produce unreliable results. Conclusion: We have presented an efficient simulation framework for respiration-induced $B_0$ variation in the head. The method can be used to predict $B_0$ shifts with high spatiotemporal resolution under different breathing conditions and aid in the design of dynamic $B_0$ compensation strategies.

The Effect of Non-elastic and Elastic Tapes on the Pain, Craniovertebral Angle, and Balance of Patients with a Forward Head Posture (비탄력성 테이프와 탄력성 테이프의 적용이 앞쪽머리자세 환자의 통증과 머리척추각 및 균형능력에 미치는 영향)

  • Seung-Kyu, Kim;Gak, HwangBo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.4
    • /
    • pp.141-150
    • /
    • 2022
  • PURPOSE: This study was conducted to investigate the effects of non-elastic and elastic tapes on pain, craniovertebral angle, and balance in forward head posture (FHP) patients. METHODS: A total of 44 adults with FHP were randomly assigned to a group that performed a stretching exercise after non-elastic taping (n = 22) and another group that performed the stretching exercise after elastic taping (n = 22), respectively. The stretching exercise was performed five times a week for 30 minutes per session. The visual analogue scale was used to compare neck pain, the craniovertebral angle was measured to compare alignment, and the limit of stability was measured to compare balance. RESULTS: The groups that performed the stretching exercise after both elastic and non-elastic taping showed significant positive changes in pain and the craniovertebral angle of the head in pre- post measurements (p < .05). In the follow-up test for the pain and craniovertebral angle, there was no significant difference from the post-test in the non-elastic group (p > .05), but a significant difference was seen in the elastic group (p < .05). CONCLUSION: Stretching exercises with taping for patients with a FHP are more effective in improving pain and alignment. However, the short-duration tape application did not affect the balancing ability. When the non-elastic tape was used, the effect lasted longer than that of the elastic tape, and pain relief was effective in the case of the elastic tape. Therefore, tape therapy would be more effective if customized according to the patient's condition.

Immediate Effects of High-Frequency Diathermy on Neck, Shoulder Alignment, Pain and Function in Adults with Forward Head Posture (고주파심부투열 치료가 앞쪽머리자세를 가진 성인의 자세정렬, 통증 그리고 기능에 미치는 즉각적인 효과)

  • Young-Joo Cha;Kyoung-Tae Kim
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.3
    • /
    • pp.143-153
    • /
    • 2024
  • Purpose : Forward head posture (FHP), characterized by the anterior positioning of the head relative to the spine, is a common postural deviation that can lead to neck pain, reduced mobility, and muscle imbalances. Recently, high-frequency deep heat therapy (HFDT) has been gaining attention for the intervention of FHP. This research aims to investigate the efficacy of HFDT in comparison to instrument assisted soft-tissue mobilization (IASTM) for treating FHP among 30 young adults. Methods : Participants were randomly assigned to either the HFDT or IASTM group. The study focused on examining changes in neck joint mobility, pain thresholds, rounded shoulder distance, lower trapezius muscle strength, and neck dysfunction. Measurements were taken before and after the interventions. Paired t-tests were used for within-group analyses, and independent t-tests were employed for between-group comparisons. The statistical significance level α was set to .05. Results : Statistically significant improvements were observed across all measured parameters in both groups (p<.05). The HFDT group showed significantly greater enhancements in neck joint mobility, pain thresholds, rounded shoulder distance, lower trapezius muscle strength, and neck dysfunction parameters. Specifically, HFDT was more effective than IASTM in improving neck joint mobility, right upper trapezius pain threshold, left rounded shoulder distance, and right lower trapezius strength. The only exceptions were neck flexion range of motion, left upper trapezius pain threshold, right rounded shoulder distance, and left lower trapezius strength, where no significant differences were found between the groups. Conclusion : The findings suggest that HFDT, by combining the benefits of high-frequency therapy and manual therapy, effectively alleviates upper trapezius muscle pain and tension, enhances neck mobility, and strengthens lower trapezius muscles. Thus, HFDT could be considered a valuable intervention for clinicians aiming to address FHP and associated musculoskeletal problems.

Assessment of whipping and springing on a large container vessel

  • Barhoumi, Mondher;Storhaug, Gaute
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.442-458
    • /
    • 2014
  • Wave induced vibrations increase the fatigue and extreme loading, but this is normally neglected in design. The industry view on this is changing. Wave induced vibrations are often divided into springing and whipping, and their relative contribution to fatigue and extreme loading varies depending on ship design. When it comes to displacement vessels, the contribution from whipping on fatigue and extreme loading is particularly high for certain container vessels. A large modern design container vessel with high bow flare angle and high service speed has been considered. The container vessel was equipped with a hull monitoring system from a recognized supplier of HMON systems. The vessel has been operating between Asia and Europe for a few years and valuable data has been collected. Also model tests have been carried out of this vessel to investigate fatigue and extreme loading, but model tests are often limited to head seas. For the full scale measurements, the correlation between stress data and wind data has been investigated. The wave and vibration damage are shown versus heading and Beaufort strength to indicate general trends. The wind data has also been compared to North Atlantic design environment. Even though it has been shown that the encountered wind data has been much less severe than in North Atlantic, the extreme loading defined by IACS URS11 is significantly exceeded when whipping is included. If whipping may contribute to collapse, then proper seamanship may be useful in order to limit the extreme loading. The vibration damage is also observed to be high from head to beam seas, and even present in stern seas, but fatigue damage in general is low on this East Asia to Europe trade.

Effective dose from direct and indirect digital panoramic units

  • Lee, Gun-Sun;Kim, Jin-Soo;Seo, Yo-Seob;Kim, Jae-Duk
    • Imaging Science in Dentistry
    • /
    • v.43 no.2
    • /
    • pp.77-84
    • /
    • 2013
  • Purpose: This study aimed to provide comparative measurements of the effective dose from direct and indirect digital panoramic units according to phantoms and exposure parameters. Materials and Methods: Dose measurements were carried out using a head phantom representing an average man (175 cm tall, 73.5 kg male) and a limbless whole body phantom representing an average woman (155 cm tall, 50 kg female). Lithium fluoride thermoluminescent dosimeter (TLD) chips were used for the dosimeter. Two direct and 2 indirect digital panoramic units were evaluated in this study. Effective doses were derived using 2007 International Commission on Radiological Protection (ICRP) recommendations. Results: The effective doses of the 4 digital panoramic units ranged between $8.9{\mu}Sv$ and $37.8{\mu}Sv$. By using the head phantom, the effective doses from the direct digital panoramic units ($37.8{\mu}Sv$, $27.6{\mu}Sv$) were higher than those from the indirect units ($8.9{\mu}Sv$, $15.9{\mu}Sv$). The same panoramic unit showed the difference in effective doses according to the gender of the phantom, numbers and locations of TLDs, and kVp. Conclusion: To reasonably assess the radiation risk from various dental radiographic units, the effective doses should be obtained with the same numbers and locations of TLDs, and with standard hospital exposure. After that, it is necessary to survey the effective doses from various dental radiographic units according to the gender with the corresponding phantom.

The Frequency and Length Dependence of the Target Strength of the Largehead Hairtail (Trichiurus lepturus) in Korean Waters

  • HwangBo, Young;Lee, Dae-Jae;Lee, Yoo-Won;Lee, Kyoung-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.152-161
    • /
    • 2009
  • The largehead hairtail (Trichiurus lepturus) is one of the most common fisheries stocks in the East China Sea and the Yellow Sea. The species is caught using a variety of fishing tools, such as a stow net or a long line, as well as jigging and trawling. Scientific investigations have been conducted throughout the world to enable evidence-based estimations for the management and protection of the main fisheries biomass. For example, inshore and offshore hydro acoustic surveys are performed annually using bottom- and mid-water trawls around the Korean Peninsula. However, to date, no acoustic survey has been conducted to estimate fish size distribution, which is necessary to construct a data bank of target strength (TS) relative to fish species, length (L), and frequency. This study describes the frequency and length dependence of TS among fishes in Korean waters for the purpose of constructing such a TS data bank. TS measurements of the largehead hairtail were carried out in a water tank (L 5 m$\times$width 6 m$\times$ height 5 m) at frequencies of 50, 75, 120, and 200 kHz, using a tethering method. The average TS patterns were measured as a function of tilt angle, ranging from $-45^{\circ}$ (head down) to $+45^{\circ}$ (head up) every $0.2^{\circ}$. The length conversion constant ($b_{20}$) was estimated under the assumption that TS is proportional to the square of the length. In addition, in situ TS measurements on live largehead hairtails were performed using a split beam echo sounder.

Nominal Wake Measurement for KVLCC2 Model Ship in Regular Head Waves at Fully Loaded Condition (선수 규칙파 중 만재상태의 KVLCC2 모형선 공칭반류 계측)

  • Kim, Ho;Jang, Jinho;Hwang, Seunghyun;Kim, Myoung-Soo;Hayashi, Yoshiki;Toda, Yasuyuki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.371-379
    • /
    • 2016
  • In the ship design process, ship motion and propulsion performance in sea waves became very important issues. Especially, prediction of ship propulsion performance during real operation is an important challenge to ship owners for economic operation in terms of fuel consumption and route-time evaluation. Therefore, it should be considered in the early design stages of the ship. It is thought that the averaged value and fluctuation of effective inflow velocity to the propeller have a great effect on the propulsion performance in waves. However, even for the nominal velocity distribution, very few results have been presented due to some technical difficulties in experiments. In this study, flow measurements near the propeller plane using a stereo PIV system were performed. Phase-averaged flow fields on the propeller plane of a KVLCC2 model ship in waves were measured in the towing tank by using the stereo PIV system and a phase synchronizer with heave motion. The experiment was carried out at fully loaded condition with making surge, heave and pitch motions free at a forward speed corresponding to Fr=0.142 (Re=2.55×106) in various head waves and calm water condition. The phase averaged nominal velocity fields obtained from the measurements are discussed with respect to effects of wave orbital velocity and ship motion. The low velocity region is affected by pressure gradient and ship motion.

Maximum diameter versus volumetric assessment for the response evaluation of vestibular schwannomas receiving stereotactic radiotherapy

  • Choi, Youngmin;Kim, Sungmin;Kwak, Dong-Won;Lee, Hyung-Sik;Kang, Myung-Koo;Lee, Dong-Kun;Hur, Won-Joo
    • Radiation Oncology Journal
    • /
    • v.36 no.2
    • /
    • pp.114-121
    • /
    • 2018
  • Purpose: To explore the feasibility of maximum diameter as a response assessment method for vestibular schwannomas (VS) after stereotactic radiosurgery or fractionated stereotactic radiotherapy (RT), we analyzed the concordance of RT responses between maximum diameters and volumetric measurements. Materials and Methods: Forty-two patients receiving curative stereotactic radiosurgery or fractionated stereotactic RT for VS were analyzed retrospectively. Twelve patients were excluded: 4 did not receive follow-up magnetic resonance imaging (MRI) scans and 8 had initial MRI scans with a slice thickness >3 mm. The maximum diameter, tumor volume (TV), and enhanced tumor volume (ETV) were measured in each MRI study. The percent change after RT was evaluated according to the measurement methods and their concordances were calculated with the Pearson correlation. The response classifications were determined by the assessment modalities, and their agreement was analyzed with Cohen kappa statistics. Results: Median follow-up was 31.0 months (range, 3.5 to 86.5 months), and 90 follow-up MRI studies were analyzed. The percent change of maximum diameter correlated strongly with TV and ETV (r(p) = 0.85, 0.63, p = 0.000, respectively). Concordance of responses between the Response Evaluation Criteria in Solid Tumors (RECIST) using the maximum diameters and either TV or ETV were moderate (kappa = 0.58; 95% confidence interval, 0.32-0.85) or fair (kappa = 0.32; 95% confidence interval, 0.05-0.59), respectively. Conclusions: The percent changes in maximum diameter and the responses in RECIST were significantly concordant with those in the volumetric measurements. Therefore, the maximum diameters can be used for the response evaluation of VS following stereotactic RT.

Study on Uncertainty Factors of Head Vibration Measurements (머리 진동 측정치의 불확도 인자들에 관한 연구)

  • Cheung, Wan-Sup;Kim, Young-Tae;Ryu, Je-Dam;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.20-28
    • /
    • 2005
  • This paper addresses uncertainty issues encountered recently in measuring head vibration using the conventional 6-axis or 9-axis bite-bar model. Those conventional bite-bar models are shown to present insufficient information to evaluate a generalized motion of head vibration. In order to overcome such limit, a new theoretical measurement model that consists of four 3-axis linear accelerometers is suggested. It is shown to enable the measurement of three angular acceleration components and six second-order angular velocity-dependent terms. Those nine angular motion-related ones, in addition to the three linear acceleration terms at the origin, are found to make it possible to evaluate the generalized head vibration for a given position. To examine the feasibility of the proposed method, a newly designed 12-axis bite-bar was developed. Detailed experimental results obtained from the developed 12-axis bite-bar are demonstrated in this paper. They illustrate that the popular 6-axis bite-bar model yield about $4.0\%$ relative measurement uncertainty for the pitch component of head vibration, $14\%$ and $10\%$ relative measurement uncertainty for the roll and yaw components of head vibration, respectively. Furthermore, this paper proposes other uncertainty factors to be considered in the future.

Correlation Analysis between Head Rice Ratio and Agronomic Traits in RILs for Developing A Promising Rice Culitivar Adaptable to The Early-Transplanting Cultivation (조기재배 적합 벼품종 육성을 위한 재조합집단에서 완전미율과 농업형질과의 상관분석)

  • Lee, Jong-Hee;Choi, Jun-Hyun;Kim, Sang-Yeol;Lee, Ji-Yoon;Kim, Choon-Song;Yeo, Un-Sang;Song, You-Chen;Sohn, Young-Bo;Oh, Myung-Kyu;Kang, Hang-Won;Nam, Min-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this study, we conducted to identify predictive parameters affecting the head rice ratio for developing high quality rice cultivar adaptable to the early-transplanting cultivation. The recombinant inbred lines (RILs) population from a cross between the parents of Pungmi and Koshihikari was used for test materials. Variations were observed in most of the measurements, eg culm length (ranging from 51.0 cm to 97.0 cm), amylose content (14.0~20.1%), protein content (5.2~7.4%), pasting properties (peak viscosity, 227.2~309.8 RVU) and head rice ratio (67.7~96.7%). Significant correlations between head rice ratio versus culm length (0.443) and head rice ratio versus protein content (-0.458) were detected in RIL population. However, culm length was negatively related to lodging tolerance. In order to develop a commercially suitable cultivar, selection for short culm and high head rice ratio of rice grains with physiochemical properties such as protein content, amylase content and taste value should be considered. This results can be used to increase the efficiency of breeding program for developing a new early-maturing rice variety adaptable to early transplanting cultivation in Korea.