• Title/Summary/Keyword: hazardous waste

Search Result 251, Processing Time 0.023 seconds

Emission Characteristics and Hazard Assessment of Polycyclic Aromatic Hydrocarbon (PAHs) from Solid Fuel Facilities (고형연료제품 사용시설에 따른 다환방향족탄화수소 (PAHs)의 배출특성 및 유해성 평가)

  • Heo, Sun-Hwa;Lim, Seung-Young;Kang, Dae-Il;Kim, Dae-Gon;Jeon, Ki-Joon;Jang, Kee-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.333-341
    • /
    • 2017
  • Recently, the earth has shown the limit of environmental capacity. It is also experiencing an environmental crisis with rising energy prices and depletion of coal. Therefore, development of renewable energy is very important solution. However, waste fuel solid are renewable fuels, but they cause environmental problems. In this study, the emission characteristics of hazardous air pollutants were analyzed through measurements at the facilities using solid fuels (SRF, BIO-SRF). Analysis method of PAHs are based on the Korea Standard Methods for Examination. The analysis of PAHs showed that the concentration much higher in Naphthalene, and Benzo(a)pyrene showed at a higher concentration incertain sources. As a result of gas phase and particle phase PAHs, most of Benzo(a)pyrene appeared to be particulate. Through the results of this study will provide basic data for atmospheric environmental management.

SBA-15 Supported Fe, Ni, Fe-Ni Bimetallic Catalysts for Wet Oxidation of Bisphenol-A

  • Mayani, Suranjana V.;Mayani, Vishal J.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3535-3541
    • /
    • 2014
  • Bisphenol A is considered as pollutant, because it is toxic and hazardous to living organisms even at very low concentrations. Biological oxidation used for removing this organic from waste water is not suitable and consequently application of catalytic wet oxidation has been considered as one of the best options for treating bisphenol A. We have developed Fe/SBA-15, Ni/SBA-15 and Fe-Ni/SBA-15 as heterogeneous catalysts using the advanced impregnation method for oxidation of bisphenol A in water. The catalysts were characterized with physico-chemical characterization methods such as, powder X-ray diffraction (PXRD), FT-IR measurements, N2 adsorption-desorption isotherm, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. This work illustrates activity of the catalysts for heterogeneous catalytic degradation reaction revealed with excellent conversion and recyclability. The degradation products identified were not persistent pollutants. GC-MS analysis identified the products: 2,4-hexadienedioic acid, 2,4-pentadienic acid and isopropanol or acetic acid. The leachability study indicated that the catalysts release very little metals to water. Therefore, the possibility of water contamination through metal leaching was almost negligible.

Combination Investigation Method for Grounwater Development Around Shinbuk area in Kangwon-Do (강원도 신북지역의 지하수 개발을 위한 복합 탐사법의 이용)

  • 서백수;김영화;한춘호;신성렬
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.39-50
    • /
    • 2000
  • Because of numerous mountain region, agricultural affairs work can't be done without groundwater in Kangwon Do area. Especially to improve high mountain area vegetable quality and raise income offarmers, both of groundwater and hydrothermal system to keep adequate temperature in hot and coldseason have to be developed. Domestic groundwater was developed for the use of agricultural watersince 1960. Exact investigation and control of groundwater are greatly required in utilizing undergroundspace as subway, nuclear power plant, oil and hazardous waste storehouse. Groundwater contaminationowing to industrial irrigation, trash decomposition can have a serious effect on human health and rustof underground building. In this study, global prospecting system are applied to detect groundwater, using electrical, seismic and georadar prospecting method.

  • PDF

Pyrolysis Reaction for the Treatment of Hazardous Halogenated Hydrocarbon Waste (유해 할로겐화 탄화수소 폐기물 처리를 위한 열분해 반응)

  • 조완근
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.399-407
    • /
    • 1997
  • The pyrolysis reactions of atomic hydrogen with chloroform were studied In a 4 cm 1.6. tubular flow reactor with low flow velocity 1518 cm/sec and a 2.6 cm 1.4. tubular flow reactor with high flow velocity (1227 cm/sec). The hydrogen atom concentration was measured by chemiluminescence titration with nitrogen dioxide, and the chloroform concentrations were determined using a gas chromatography. The chloroform conversion efficiency depended on both the chloroform flow rate and linear flow velocity, but 416 not depend on the flow rate of hydrogen atom. A computer model was employed to estimate a rate constant for the initial reaction of atomic hydrogen with chloroform. The model consisted of a scheme for chloroform-hydrogen atom reaction, Runge-Kutta 4th-order method for Integration of first-order differential equations describing the time dependence of the concentrations of various chemical species, and Rosenbrock method for optimization to match model and experimental results. The scheme for chloroform-hydrogen atom reaction Included 22 elementary reactions. The rate constant estimated using the data obtained from the 2.6 cm 1.4. reactor was to be 8.1 $\times$ $10^{-14}$ $cm^3$/molecule-sec and 3.8 $\times$ $10^{-15}$ cms/molecule-sec, and the deviations of computer model from experimental results were 9% and 12% , for the each reaction time of 0.028 sec and 0.072 sec, respectively.

  • PDF

A Study on The Comparison of Leaching Methods and Stability of Cement Mortar Solidified Cadmium sludge (시멘트고화에 의한 카드뮴슬러지의 안정성 및 용출실험방법 비교 검토)

  • 주소영;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.21-30
    • /
    • 2002
  • This study was Performed to evaluate the effective solidification of Cd sludge using cement and power plant fly ash as cement admixture, to identify the leaching characteristics of the heavy metal Cd sludge solidified, and to develope proper KLT(Korean Leaching Test) of hazardous waste. KLT was compared with EPT(Extraction Procedure Toxicity) and TCLP(Toxicity Characteristics Leaching Procedure). Fly ash contents ranged from 0% to 30% of cement weight. The experimental results showed that the optimum amount of fly ash replaced was 10% to 15% and KLT was less appropriate than EPA and TCLP. Also the purpose of the study was to suggest the modification factors on the leaching test currently used, based on the above mentioned aspects. The effects of pH, leaching time, leaching for agitating intensity, and leaching solvent were investigated. As the result of test, the leaching potential was relatively high when the pH and agitation intensity of leaching solution were 5 and 150rpm, respectively. Leaching time of six hours was found to be sufficient and the use of acetic acid as a leaching solvent is more useful in landfill site particularly.

A study on the removal of heavy metals from soils using electrokinetic soil processing and ion exchange membrane (전기장과 이온교환막을 이용한 토양에서의 중금속 제거에 대한 연구)

  • 김순오
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.43-51
    • /
    • 1999
  • In order to remediate hazardous waste site, a process of electrokinetically purging chemicals from saturated soil is examined by laboratory experiments. Electrokinetic soil remediation is one of the most promising soil decontamination processes that habe igh removal efficiency and time-effectiveness in low-permeability soils such as clay. Being combined with several mechanisms-electromigration, elec troosmosis, diffusion and electrolysis of water, electrokinetic soil processing can remove non-polar organics as well as ionic contaminants. The objectives of this study are; 1) the exploration of the feasibility of electrokinetic soil processing on the removal of heavy metals, 2) the investigation of applicability to the tailing-soils in aban doned mining area, 3) the examination of effects of soil pH and conductivity on the transport phenomena of elements in soils, and 4) the investigation of the applicability of the ionexchange membrance to the efficient collection of heavy metals removed from contaminated soils. With the result of this study, it is suggested that the removal efficiency is significantly influenced by applied voltage & current, type of purging solutions, soil pH, permeability and zeta potentials of soil. Although further study should be needed, it is possible to collect removed heavy metals with ion-exchange membrance in cathode compartment.

  • PDF

The Removal of Organic Dye Waste using Natural Clay Minerals (천연산 점토광물을 이용한 폐-유기 염료 제거)

  • Park, Jung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.321-327
    • /
    • 2006
  • red 1 and acid blue 92, anionic dyes, were removed from synthetic wastewater by the surfactant-modified clay minerals. Two different clays, such as Korean clay(M78) and Japanese clay(KJ) were treated with three different sulfactants, CTMA, DSDMA and TMSA. The surfactant-modified clay minerals such as M-1(CTMA), M-3(TMSA), KJ-1(CTMA) and KJ-3(TMSA), showed high removal efficiencies with dyes, while M-2(DSDMA) and KJ-2(DSDMA) could adsorb both dyes with relatively low efficiencies. Furthermore, almost 100% absorption of both dyes onto M-1(CTMA) and KJ-3(TMSA) revealed the possibility that these materials can be used for the removal of hazardous organic dyes from wastewater.

The Determination of Diffusion and Partition Coefficients of Indoor Bottom Finishing Materials (바닥재의 확산계수 및 분배계수 산정)

  • Park, Jin-Soo;Little, John C.;Kim, Shin-Do;Yun, Joong-Seop
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • Many building materials may contain high concentrations of volatile organic compounds (VOCs) and other hazardous pollutants(HAPs). Specifically, VOCs discharged by indoor building material may cause "new house" syndrome, atopic dermatitis etc. The diffusion coefficient and initially contained total VOC quantity were determined using microbalance experiments and small chamber tests. Interactions between volatile organic compounds (VOCs) and vinyl flooring (VF), a relatively homogenous, diffusion-controlled building material, were characterized. Rapid determination of the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) for each VOC was achieved by placing thin VF slabs in a dynamic microbalance and subjecting them to controlled sorption/desorption cycles. K and D are shown to be independent of concentration for all of the VOCs and water vapor. This approach can be applied to other diffusion-controlled materials and should facilitate the prediction of their source/sink behavior using physically-based models.

Development of the ultra/nano filtration system for textile industry wastewater treatment

  • Rashidi, Hamidreza;Sulaiman, Nik Meriam Nik;Hashim, Nur Awanis;Bradford, Lori;Asgharnejad, Hashem;Larijani, Maryam Madani
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.333-344
    • /
    • 2020
  • Advances in industrial development and waste management over several decades have reduced many of the impacts that previously affected ecosystems, however, there are still processes which discharge hazardous materials into environments. Among industries that produce industrial wastewaters, textile manufacturing processes play a noticeable role. This study was conducted to test a novel continuous combined commercial membrane treatment using polyvinylidene fluoride (PVDF), ultrafiltration (UF), and polyamide (PA) nanofiltration (NF) membranes for textile wastewater treatment. The synthetic textile wastewater used in this study contained sodium silicate, wax, and five various reactive dyes. The results indicate that the removal efficiency for physical particles (wax and resin) was 95% through the UF membrane under optimum conditions. Applying UF and NF hybrid treatment resulted in total effective removal of dye from all synthetic samples. The efficiency of sodium silicate removal was measured to be between 2.5 to 4.5% and 13 to 16% for UF and NF, respectively. The chemical oxygen demand in all samples was reduced by more than 85% after treatment by NF.

Study on Effective Treatment of Waste Gases in Chung-Ju Industrial Complex with Polymeric Absorbent( II ) (고분자 담지제에 의한 청주공단내 공장배기가스의 효율적 처리기술에 관한 연구( II ) - 고분자 담지제의 흡착실험을 중심으로 -)

  • 이상혁;이영순;전종한
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.29-34
    • /
    • 1993
  • Two major hazardous gases. SOx and NOx. are emissioned from fossile fuels. SOx has been removed when oil is refined but NOx hasn't. So NOx is very serious problem in air pollution now There are several technologies to remove NOx. e.g. cooling method. scrubbers method. combustion method, polymer membrane method and adsorbent methods. Polymer membrane and adsorbent methods have good economic merit in removal systems of low content hazard gases. Traditional absorbents are porous silicas, aluminas. active carbon and zeolites. But these absorbents act only physisorption which has less removal performance than chemisorption. In this study. polymeric absorbent which has chemisorption as well as physisorption was analyzed about chemical structure and experimented about optimum operation conditions. The results showed that the chemical structure of the polymeric absorbent was expected as polystyrene having -N-CH$_2$COOH absorbent was revealed about 310$m^2$/g. The molar ratio of absored NO to charged NO in absorption experiments was shown 60% of the polymeric absorbent and 45% of zeolite absorbent at 3$0^{\circ}C$.

  • PDF