• Title/Summary/Keyword: hazardous waste

Search Result 250, Processing Time 0.032 seconds

Preliminary Experiments on Pozzonalic Activity of Dredged Sea Soil (소성 해양 준설토의 포졸란 반응성 시험)

  • Kim, Ji-Hyun;Moon, Hoon;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.49-50
    • /
    • 2014
  • Dredged sea soil contains various contaminants. First priority to recycle dredged sea soil is to pretreat it to remove various contaminants because recycling dredge sea soil without any pre-treatment may cause a secondary contamination due to the leaching of hazardous chemicals. In this study, pretreated dredged sea soil was used to investigate pozzolanic activity. The properties of pretreated dredged sea soil were investigated, the method for heat treatment was determined, and the compressive strength of mortar using dredged sea soil was examined to evaluate pozzolanic activity. According to the results, pretreated dredged sea soil has some possibility to work as a pozzolanic material. When dredged sea soil was heat treated for 90min at 550℃, compressive strength was shown to be comparable to that of plain cement mortar.

  • PDF

Real-time Chemical Monitoring System using RGB Sensor toward PCB Manufacturing (PCB 제조공정을 위한 화학약품 용액의 실시간 모니터링 시스템)

  • An, Jong-Hwan;Lee, Seok-Jun;Kim, Lee-Chui;Hong, Sang-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.397-401
    • /
    • 2008
  • Most of the topic in PCB industry was about increasing the volume of product for the development of electronics in numerous industrial application area. However, it has been emerged that yield improvement quality manufacturing via detecting any suspicious process in order to minimize the scrapped product and material waste. In addition, recently, restriction of hazardous substances (RoHS) claims that electronic manufacturing environment should reduce the harmful chemicals usage, thus the importance of monitoring copper etchant and detecting any mis-processing is crucial for electronics manufacturing. In this paper, we have developed real-time chemical monitoring system using RGB sensor, which is simpler but more accurate method than commercially utilized oxidation reduction potential (ORP) technique. The developed Cu etchant monitoring system can further be utilized for copper interconnect process in future nano-semiconductor process.

Groundwater Monitoring Network Design by Employing CPT Rig and BAT Sampling Techniques

  • ;David Lockington;William Clarke
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.06a
    • /
    • pp.79-83
    • /
    • 1998
  • This study was conducted to delineate plume occurred in hazardous waste disposal site. At first, CPT (Cone Penetrometer Test) rig and HydroPunch were used to collect depth-discrete groundwater samples in concerned area. However, it was not capable of sampling the groundwater due to the cone refusal where the residual clay are layered at nominal depth through the aquifer. Alternatively, a number of temporary wells were installed after each of locations was penetrated using a modified steel cone functioned by CPT rig. The samples taken from those of wells were characterized by GCMS and GCFID, which revealed that sulfolane and thiolane were mainly presented. Subsequent analyses performed for the samples taken from permanent nest piezometers consistently demonstrated that possible plume boundary can be presented in the study area where contaminants were found as low as detection limit or levels of not-detectable.

  • PDF

Remediation capabilities of pilot-scale wetlands planted with Typha aungstifolia and Acorus calamus to treat landfill leachate

  • Bhagwat, Rohit V.;Boralkar, Dilip B.;Chavhan, Ram D.
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.191-198
    • /
    • 2018
  • Improper management and unsanitary approaches are implemented in disposal of leachate, which has resulted in groundwater pollution at village Uruli Devachi, Pune, India. Various physico-chemical treatment methods are commercially available for leachate treatment. However, the application of biological methods viz. phytoremediation to the municipal solid waste landfill leachate has been limited. We report the remediation ability of Typha aungstifolia and Acrorus calamus that is capable of reducing hazardous constituents from the landfill leachate. After 96 h of hydraulic retention time (HRT), it was observed that T. aungstifolia-treated sample showed high reduction potential in reducing biochemical oxygen demand, chemical oxygen demand, hardness, total dissolved solids, Na, Mg, Ca and Ni whereas A. calamus showed greater reduction capacity for alkalinity, Cl, Cu, Zn and Cr. Furthermore, it was also observed that T. aungstifolia withstood longer HRT than A. calamus. In situ application of T. aungstifolia and A. calamus for remediation of landfill leachate carries a tremendous potential that needs to be further explored.

Design and Graphic Simulation of a Cleaning Robot for a Radioactive Environment Application

  • Kim, K.;Park, J.;M. Yang;C. Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.3-161
    • /
    • 2001
  • This paper describes design features of a cleaning robot for use in a radioactive zone of the Isolation room of the Irradiated Material Examination Facility (IMEF) at Korea Atomic Energy Research Institute (KAERI). This cleaning robot is intended to completely eliminate human interaction with hazardous radioactive contaminants. The clean ing robot that is operated either by manual mode or by autonomous mode is designed to be capable of cleaning the isolation room´s floor surface and collecting dry nuclear fuel debris and other radioactive waste placed on the floor. The functional, mechanical and electrical design considerations of the cleaning robot in terms of remote cleanup operation and remote maintenance at a radioactive environment are presented. A graphical representation of the cleaning ...

  • PDF

Study fo the Characteristics Analysis of Laboratory Chemical Accidents (실험실 화학사고 특성 분석에 관한 연구)

  • Lee, Tae-Hyung;Lee, Deok-Jae;Park, Joong-Don;Shin, Chang-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.110-116
    • /
    • 2016
  • The major aim of this study was to provide information on the chemical accidents that occurred in laboratories over the last 3 years. The total incidence of laboratory chemical accidents was 30 cases; 25 cases occurred at educational institutions. Most accidents (19 cases) occurred due to spills and leaks. The main cause of the accidents analyzed was worker carelessness (21 cases). Twenty-two accidents were related to hazardous chemical substances. In addition, general chemical substances as well as waste liquid contributed 26% to the incidents related to the laboratory. Among the 22 hazardous chemical substances involved in laboratory chemical accident, 67% of accident substances were accident preparedness substances.

Characteristic studies of coal power plants ash sample and monitoring of PM 2.5

  • Thriveni., T;Ramakrishna., CH;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.45-56
    • /
    • 2017
  • Coal power plants produce electricity for the nation's power grid, but they also produce more hazardous air emissions than any other industrial pollution sources. The quantity is staggering, over 386,000 tons of 84 separate hazardous air pollutants spew from over 400 plants in 46 states. In South Korea also, annual coal ash generation from coal-fired power plants were about 6 million tons in 2015. Pollutants containing particulate matter 10, 2.5 (PM10, PM2.5), heavy metals and dioxins from coal-fired power plant. The emissions threaten the health of people who live near these power plants, as well as those who live hundreds of miles away. These pollutants that have long-term impacts on the environment because they accumulate in soil, water and animals. The present study is to investigate the physical and chemical characteristics of coal-fired power plant fly ash and bottom ash contains particulate matter, whose particulate sizes are lower than $PM_{10}$ and $PM_{2.5}$ and heavy metals. There are wide commercial technologies were available for monitoring the PM 2.5 and ultra-fine particles, among those carbonation technology is a good tool for stabilizing the alkaline waste materials. We collected the coal ash samples from different coal power plants and the chemical composition of coal fly ash was characterized by XRF. In the present laboratory research approach reveals that potential application of carbonation technology for particulate matter $PM_{10}$, $PM_{2.5}$ and stabilization of heavy metals. The significance of this emerging carbonation technology was improving the chemical and physical properties of fly ash and bottom ash samples can facilitate wide re use in construction applications.

Analysis of Non-compliance of Food Utensils, Containers, and Packages in Foreign Countries During 2011-2019 (2011-2019년 식품용 기구 및 용기·포장의 제외국 부적합 정보 분석)

  • Cho, Seung Yong;Lee, Ye Yeon;Cho, Sanggoo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.141-147
    • /
    • 2021
  • The foreign trends of noncompliance occurring frequently in food contact materials during the period of 2011-2019 was investigated by analyzing the food safety risk information DB in the National Food Safety Information Service (NFSI). A total of 2,042 cases of noncompliance of food utensils, containers, and packages were classified into 5 violation categories; administrative procedures, manufacturing and processing standards, residues and migration standards, labeling and advertising, and quality standards. This was again subcategorized according to non-compliance causative factors. The non-compliances in residues and migration standards comprised the largest proportion (76.4%) of the violative categories. The number of noncompliance information collected in 2011 was 88 cases and increased to 373 cases in 2019. A 72.8% of the non-compliance case was identified to be products of 4 countries (China 64.2%, Germany 4.0%, Japan 3.2%, and Taiwan 3.1%), those produce large quantities of containers and packaging products. During the period of 2011-2019, the number of illegal use of hazardous materials and illegal recycling of waste synthetic resins has decreased to less than one a year since 2014. On the other hand, after 2016, inconsistency of heat-resisting temperature labeling (Taiwan), non-compliance in paper container's strength standards, violation of printing standards, and the risk of consumer injury while using the products were newly reported due to the strengthening of consumer safety protection regulations. Migration of hazardous substances in synthetic polymer products such as heavy metals, melamine and formaldehyde in melamine tableware, primary aromatic amines which are colorant components in kitchenware such as ladles and spatulas, and phthalate plasticizers have been continuously reported with high frequency.

Environmentally Adaptive Stabilization of the Hazardous Heavy Metal Waste by Cementious Materials(II) (산업폐기물 중의 유해중금속의 환경친화적 안정화 처리(II))

  • Won, Jong-Han;Choi, Kwang-Hui;Choi, Sang-Hul;Lee, Hun-Ha;Sohn, Jin-Gun;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1138-1142
    • /
    • 2002
  • Slag cement and supersulfated slag cement were fabricated by mixing blast furnace slag and ordinary portland cement and adapted to solidify/stabilize heavy metal contained hazardous waste sludge. In case of slag cement, it showed continuous increase of their compressive strengths, which is attributed to the formation of the C-S-H, ettringite and monosulfate with STS sludge. However, BF and COREX sludge has a different shape and composition. therefore, adequate compressive strength could not be achieved with this slag cement. In case of the mixture of the each sludge like the STS-BF or the STS-COREX, the compressive strength over the standard level for disposing the wastes could be obtained with slag cement. The supersulfated slag cement that contain accelerators was very effective in solidifying the COREX sludge, which was difficult to solidify using different cement and obtained high compressive strength only for 3 days.

Improvement of Acid Digestion Method by Microwave for Hazardous Heavy Metal Analysis of Solid Refuse Fuel (고형연료제품의 유해중금속 분석을 위한 마이크로파 산 분해법의 개선)

  • Yang, Won-Seok;Park, Ho-Yeun;Kang, Jun-Gu;Lee, Young-Jin;Lee, Young-Kee;Yoon, Young-Wook;Jeon, Tae-Wan
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.616-626
    • /
    • 2018
  • The quality standards of solid refuse fuel (SRF) define the values for 12 physico-chemical properties, including moisture, lower heating value, and metal compounds, according to Article 20 of the Enforcement Rules of the Act on Resource Saving and Recycling Promotion. These parameters are evaluated via various SRF Quality Test Methods, but problems related to the heavy metal content have been observed in the microwave acid digestion method. Therefore, these methods and their applicability need improvement. In this study, the appropriate testing conditions were derived by varying the parameters of microwave acid digestion, such as microwave power and pre-treatment time. The pre-treatment of SRF as a function of the microwave power revealed an incomplete decomposition of the sample at 600 W, and the heavy metal content analysis was difficult to perform under 9 mL of nitric acid and 3 mL of hydrochloric acid. The experiments with the reference materials under nitric acid at 600 W lasted 30 minutes, and 1,000 W for 20 or 30 minutes were considered optimal conditions. The results confirmed that a mixture of SRF and an acid would take about 20 minutes to reach $180^{\circ}C$, requiring at least 30 minutes of pre-treatment. The accuracy was within 30% of the standard deviation, with a precision of 70 ~ 130% of the heavy metal recovery rate. By applying these conditions to SRF, the results for each condition were not significantly different and the heavy metal standards for As, Pb, Cd, and Cr were satisfied.