• Title/Summary/Keyword: harmonic polynomials

Search Result 17, Processing Time 0.023 seconds

NOTE ON STIRLING POLYNOMIALS

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.591-599
    • /
    • 2013
  • A large number of sequences of polynomials and numbers have arisen in mathematics. Some of them, for example, Bernoulli polynomials and numbers, have been investigated deeply and widely. Here we aim at presenting certain interesting and (potentially) useful identities involving mainly in the second-order Eulerian numbers and Stirling polynomials, which seem to have not been given so much attention.

Voltage-dependent Power-Factor Modeling with Harmonic Component by Static Experiments of Individual and Composite Loads (개별기기 및 종합부하 실험에 의한 고조파 성분을 고려한 전압에 대한 부하역률 모델링)

  • Shin, Chang-Ki;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.230-233
    • /
    • 2004
  • This paper is proposed that The voltage-dependant power factor model is established as 5th polynomials with convenience data type. This modeling includes the harmonic components by static experiments of individual and composite load. This paper suggested methodology for modeling bus and regional power factor with consideration of harmonics effect by load composition rates and individual load power factor models.

  • PDF

Dynamic analysis of a laminated composite beam under harmonic load

  • Akbas, S.D.
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.563-573
    • /
    • 2020
  • Dynamic responses of a laminated composite cantilever beam under a harmonic are investigated in this study. The governing equations of problem are derived by using the Lagrange procedure. The Timoshenko beam theory is considered and the Ritz method is implemented in the solution of the problem. The algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of dynamic problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of load parameter, the fiber orientation angles and stacking sequence of laminas on the dynamic responses of the laminated beam are investigated.

A NEW FIFTH-ORDER WEIGHTED RUNGE-KUTTA ALGORITHM BASED ON HERONIAN MEAN FOR INITIAL VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS

  • CHANDRU, M.;PONALAGUSAMY, R.;ALPHONSE, P.J.A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.191-204
    • /
    • 2017
  • A new fifth-order weighted Runge-Kutta algorithm based on heronian mean for solving initial value problem in ordinary differential equations is considered in this paper. Comparisons in terms of numerical accuracy and size of the stability region between new proposed Runge-Kutta(5,5) algorithm, Runge-Kutta (5,5) based on Harmonic Mean, Runge-Kutta(5,5) based on Contra Harmonic Mean and Runge-Kutta(5,5) based on Geometric Mean are carried out as well. The problems, methods and comparison criteria are specified very carefully. Numerical experiments show that the new algorithm performs better than other three methods in solving variety of initial value problems. The error analysis is discussed and stability polynomials and regions have also been presented.

Analytical approximate solution for Initial post-buckling behavior of pipes in oil and gas wells

  • Yu, Yongping;Sun, Youhong;Han, Yucen
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.155-163
    • /
    • 2012
  • This paper presents analytical approximate solutions for the initial post-buckling deformation of the pipes in oil and gas wells. The governing differential equation with sinusoidal nonlinearity can be reduced to form a third-order-polynomial nonlinear equation, by coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. The linearization is performed prior to proceeding with harmonic balancing thus resulting in a set of linear algebraic equations instead of one of non-linear algebraic equations, unlike the classical method of harmonic balance. We are hence able to establish analytical approximate solutions. The approximate formulae for load along axis, and periodic solution are established for derivative of the helix angle at the end of the pipe. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis

  • Lee, Gil-Yong;Jin, Seung-Seop;Park, Yong-Hwa
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.311-325
    • /
    • 2020
  • In applying the spectral stochastic finite element methods to the frequency response analysis, the conventional methods are known to give unstable and inaccurate results near the natural frequencies. To address this issue, a new sensitivity based stabilized formulation for stochastic frequency response analysis is proposed in this paper. The main difference over the conventional spectral methods is that the polynomials of random variables are applied to both numerator and denominator in approximating the harmonic response solution. In order to reflect the resonance behavior of the structure, the denominator polynomials is constructed by utilizing the natural frequency sensitivity and the random mode superposition. The numerator is approximated by applying a polynomial chaos expansion, and its coefficients are obtained through the Galerkin or the spectral projection method. Through various numerical studies, it is seen that the proposed method improves accuracy, especially in the vicinities of structural natural frequencies compared to conventional spectral methods.

Analytical approximate solutions for large post-buckling response of a hygrothermal beam

  • Yu, Yongping;Sun, Youhong
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.211-223
    • /
    • 2012
  • This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. Two approximate formulae for load along axis, potential strain for free hygrothermal expansion and periodic solution are established for small as well as large angle of rotation at the end of the beam. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

An On-Line Harmonic Elimination Pulse Width Modulation Scheme for Voltage Source Inverter

  • Salam, Zainal
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • This paper proposes a new harmonic elimination PWM (HEPWM) scheme for voltage source inverters (VSI) based on the curve fittings of certain polynomials functions. The resulting equations to calculate the switching angle of the HEPWM require only the addition and multiplication processes; therefore any number of harmonics to be eliminated and the fundamental amplitude of the pole switching waveform (NP1) can be controlled on-line. An extensive angle error analysis is carried out to determine the accuracy of the algorithm in comparison to the exact solution. To verify the workability of the technique, an experimental single phase VSI is constructed. The algorithm is implemented on a VSI using a 16-bit microprocessor. The results obtained from the test rig are compared to the theoretical prediction and the results of the MATLAB simulations.