• Title/Summary/Keyword: harmonic oscillator

Search Result 176, Processing Time 0.029 seconds

Towards the Reconstruction of Time-dependent Vibronic States from Nonlinear Wavepacket Interferometry Signals

  • Humble, Travis S.;Cina, Jeffrey A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1111-1118
    • /
    • 2003
  • We present one-color nonlinear wavepacket interferometry (WPI) signal calculations for a system of two electronic levels and one vibrational degree of freedom. We consider two cases, a displaced harmonic oscillator system, which can be treated analytically, and a model photodissociative system, whose WPI signal must be calculated by numerical wavepacket propagation. We show how signals obtained with different combinations of intrapulse-pair phase shifts can be combined to isolate the complex-valued overlap between a given onepulse target wavepacket and a variable three-pulse reference wavepacket. We demonstrate that with a range of inter- and intrapulse-pair delays the complex overlaps and variable reference states can be used to reconstruct the target wavepacket. We compare our results with previous methods for vibronic state reconstruction based on linear WPI and discuss further generalizations of our method.

A Method of Load Impedance Optimization for High Efficiency Millimeter-wave Range 2nd Harmonic Generation (밀리미터파 대역 제2고조파 고효율 생성을 위한 부하 임피던스의 최적화 방법)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1566-1571
    • /
    • 2011
  • The objective of this paper is to present a quantitative analysis leading to the assessment of optimum terminating impedances in the design of active frequency multipliers. A brief analysis of the basic principal of the GaAs FET frequency multiplier is presented. The analysis is outlined in bias optimization and drive power determination. Utilizing the equivalent circuit model of GaAs FET, we have simulated the optimized load impedance for the maximum output of the active frequency multipliers. The C-class and reverse C-class frequency doublers have been fabricated and the load impedances have been measured. The experimental results are in good agreement with the estimated results in the simulation with the accuracy of 90%.

CONDITIONAL INTEGRALS ON ABSTRACT WIENER AND HILBERT SPACES WITH APPLICATION TO FEYNMAN INTEGRALS

  • Chung, Dong-Myung;Kang, Soon-Ja;Lim, Kyung-Pil
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.319-344
    • /
    • 2004
  • In this paper, we define conditional integrals on abstract Wiener and Hilbert spaces and then obtain a formula for evaluating the integrals. We use this formula to establish the existence of conditional Feynman integrals for the classes $A^{q}$(B) and $A^{q}$(H) of functions on abstract Wiener and Hilbert spaces and then specialize this result to provide the fundamental solution to the Schrodinger equation with the forced harmonic oscillator.tor.

Stability of Explicit Symplectic Partitioned Runge-Kutta Methods

  • Koto, Toshiyuki;Song, Eunjee
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • A numerical method for solving Hamiltonian equations is said to be symplectic if it preserves the symplectic structure associated with the equations. Various symplectic methods are widely used in many fields of science and technology. A symplectic method preserves an approximate Hamiltonian perturbed from the original Hamiltonian. It theoretically supports the effectiveness of symplectic methods for long-term integration. Although it is also related to long-term integration, numerical stability of symplectic methods have received little attention. In this paper, we consider explicit symplectic methods defined for Hamiltonian equations with Hamiltonians of the special form, and study their numerical stability using the harmonic oscillator as a test equation. We propose a new stability criterion and clarify the stability of some existing methods that are visually based on the criterion. We also derive a new method that is better than the existing methods with respect to a Courant-Friedrichs-Lewy condition for hyperbolic equations; this new method is tested through a numerical experiment with a nonlinear wave equation.

New Algorithm for Recursive Estimation in Linear Discrete-Time Systems with Unknown Parameters

  • Shin Vladimir;Ahn Jun-Il;Kim Du-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.456-465
    • /
    • 2006
  • The problem of recursive filtering far linear discrete-time systems with uncertainties is considered. A new suboptimal filtering algorithm is herein proposed. It is based on the fusion formula, which represents an optimal mean-square linear combination of local Kalman estimates with weights depending on cross-covariances between local filtering errors. In contrast to the optimal weights, the suboptimal weights do not depend on current measurements, and thus the proposed algorithm can easily be implemented in real-time. High accuracy and efficiency of the suboptimal filtering algorithm are demonstrated on the following examples: damper harmonic oscillator motion and vehicle motion constrained to a plane.

A Design of LC-tuned Sinusoidal VCOs Using OTA-C Active Inductors

  • Chung, Won-Sup;Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.11 no.3
    • /
    • pp.122-128
    • /
    • 2007
  • Sinusoidal voltage-controlled oscillators (VCOs) based on Colpitts and Hartley oscillators are presented. They consist of a LC parallel-tuned circuit connected in a negative-feedback loop with an OTA-R amplifier and two diode limiters, where the inductor is simulated one realized with temperature-stable linear operational transconductance amplifiers (OTAs) and a grounded capacitor. Prototype VCOs are built with discrete components. The Colpitts VCO exhibits less than 1% nonlinearity in its current-to-frequency transfer characteristic from 4.2 to 21.7 MHz and ${\pm}$95 ppm/$^{\circ}C$ temperature drift of frequency over 0 to $70^{\circ}C$. The total harmonic distortion (THD) is as low as 2.92% with a peak-to-peak amplitude of 0.7 V for a frequency-tuning range of 10.8-32 MHz. The Hartley VCO has the temperature drift and THD of two times higher than those of the Colpitts VCO.

  • PDF

Low Spurious Image Rejection Mixer for K-band Applications

  • Lee, Moon-Que;Ryu, Keun-Kwan;Kim, Hyeong-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.272-275
    • /
    • 2004
  • A balanced single side-band (SSB) mixer employing a sub-harmonic configuration is designed for up and down conversions in K-band. The designed mixer uses anti-parallel diode (APD) pairs to effectively eliminate even harmonics of the local oscillator (LO) spurious signal. To reduce the odd harmonics of LO at the RF port, we employ a balanced configuration for LO. The fabricated chip shows 12$\pm$2dB of conversion loss and image-rejection ratio of about 20dB for down conversion at RF frequencies of 24-27.5GHz. As an up-conversion mode, the designed chip shows 12dB of conversion loss and image-rejection ratio of 20 ~ 25 dB at RF frequencies of 25 to 27GHz. The odd harmonics of the LO are measured below -37dBc.

Quasi-phase matched optical parametric oscillators using periodically poled $KNbO_3$ crystals (주기적으로 분극 반전된 $KNbO_3$를 이용한 준위상 정합 광 매개 진동자)

  • Lee Gwang Jo;Kim Jung Hyeon;Im Min Ho;O Hyeon Ho;Lee Don Hui;Yun Chun Seop
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.230-231
    • /
    • 2003
  • $KNbO_3$is one of the best materials for efficient nonlinear frequency conversion, due to its large nonlinear optical coefficient ($d_{33}$ = 20.6 pm/V), wide transparency range (0.4 ~ 5 $\mu$m) and freedom from photorefractive effects. Quasi-phase-matched second harmonic generation using periodically poled $KNbO_3$ (PPKN) crystals has been reported. Here we report on fabrication of PPKN and demonstration of a pulsed optical param etric oscillator (QPM OPO) pumped by an Nd:YAG laser. (omitted)

  • PDF

A Variant of the Brillouin-Wigner Perturbation Theory with Epstein-Nesbet Partitioning

  • Lee, Sangyoub;Choi, Cheol Ho;Kim, Eunji;Choi, Young Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3279-3283
    • /
    • 2013
  • We present an elementary pedagogical derivation of the Brillouin-Wigner and the Rayleigh-Schr$\ddot{o}$dinger perturbation theories with Epstein-Nesbet partitioning. A variant of the Brillouin-Wigner perturbation theory is also introduced, which can be easily extended to the quasi-degenerate case. A main advantage of the new theory is that the computing time required for obtaining the successive higher-order results is minimal after the third-order calculation. We illustrate the accuracy of the new perturbation theory for some simple model systems like the perturbed harmonic oscillator and the particle in a box.

A Study on the two phase sinusoidal voltage Controlled Oscillator with Low Distortion (저왜율을 갖는 2상정현파 전압제어 발진기에 관한 연구)

  • 이성백;이윤종
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.5
    • /
    • pp.527-534
    • /
    • 1987
  • Two phase voltage controlled oscillation was realized by using the Electronic analog simulation of nonlinear simultaneous 2st order equation in terms of vibration and it's usefullness was sustined. Sinde it is complex and expensive to implement the circuits actually which composits and multiplicate the two phase signal squared respectively, this paper is obtained the simplificotion and switching circuit. The circuit introducced in this paper had propotionality of frequency to control input voltage, rapid response time, and little phase error, also this circuit operated with very low THD(Total Harmonic Distortion) and constant amplitude at higher than 10 :1 of frequency ratio.

  • PDF