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New Algorithm for Recursive Estimation in Linear Discrete-Time
Systems with Unknown Parameters

Vladimir Shin, Jun Il Ahn, and Du Yong Kim*

Abstract: The problem of recursive filtering for linear discrete-time systems with uncertainties is
considered. A new suboptimal filtering algorithm is herein proposed. It is based on the fusion
formula, which represents an optimal mean-square linear combination of local Kalman estimates
with weights depending on cross-covariances between local filtering errors. In contrast to the
optimal weights, the suboptimal weights do not depend on current measurements, and thus the
proposed algorithm can easily be implemented in real-time. High accuracy and efficiency of the
suboptimal filtering algorithm are demonstrated on the following examples: damper harmonic
oscillator motion and vehicle motion constrained to a plane.

Keywords: Adaptive filtering, discrete-time system, Kalman filtering, mean-square etror,

partitioning approach.

1. INTRODUCTION

The problem of estimating the system state in linear
dynamic systems with unknown parameters is
considered. Suppose that a linear system with state-
space description

X1 :Fk (Q)xk +Gk (H)Vk, (1)
Vi =Hk (Q)xk +Wk, k =0,1,2,...

is being considered, where, as usual, x; eR"is the
state, y, € R™ is the measurement, v, eR" ~ N
0, (6)) and w;, eR” ~ N(0,R, (8)) are uncorrelated

Gaussian white noise sequences, and distribution of
initial state x, is Gaussian, x, ~N(X,(6),R,(6)).

In this paper, we assume that the matrices £},,Gy, 0y,

Hy, R, K, and the initial mean X, include

unknown parameter vector 6 € RP, which takes only
a finite set of values

96{91,...,01\]}. (2)

This finite set might be the result of discretizing a
continuous parameter space [1,2].
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A fundamental problem associated with such
systems is estimation of state x, from the noisy
measurements yj = {Y0s Vises Vi }-

Many methods are available for the adaptation of
systems [1-6]. In structure adaptation, two filters are
primarily used for the system (1) [1,4,6-11]. Both of
these filters are based on the Bayesian approach in
which the unknown parameter § is assumed to be

random with a prior known probability p(6). In the
first filter, @ is treated as a random constant vector
suchas &,,; =4, , or more efficiently,

O =6 +& s (3)

where ¢ is any zero-mean Gaussian white sequence.

Then system (1) together with assumption (3) can
be reformulated as the nonlinear filtering model:

{xkﬂ } _ {Fk (64 ) } N {Gk (6% )Vk}
Ok +1 & & C))
Vi =Hy (6 ) +wy

. T
for the composite state vector [x, 6;] , and the

suboptimal nonlinear filtering procedures (for
example, extended Kalman filter) can be applied to

. . T :
estimate the composite state [x, 6;] , which

contains &, as its component. However, it is

difficult to estimate the effect of approximations made
in the suboptimal realization of nonlinear filters [8,10-
12]. The second filter represents the adaptive Kalman
filter (AKF), which separates the filtering process x
from identification of the unknown parameter 6 [1-
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5]. In this paper we are interested in such an AKF that
constitutes a partitioning of the original nonlinear
filter into the bank of much simpler N local Kalman
filters where each local filter uses its own system
model (1), (2) matched to each possible parameter
value §=0;,, i=1,.,N,ie,

Xprr = F (0;) x4 +Gy (6;)v v~V (0, Oy (91‘))’(5)
Y =Hy (Hi)xk + W, WkNN(O’ Ry (0,-)).

This AKF is also referred to as Bayesian multiple
model adaptive estimation (MMAE) [13-18]. The
overall estimate of the state of this AKF is given by a
weighted sum of local Kalman filters (estimates), thus
it can be implemented on a set of parallel processors
due to its inherent parallel structure. However, the
AKF weights represent the conditional probabilities of

the specific parameter values p(&i }yé‘) which

depend on current measurements y(’)‘ and it is rather

difficult to implement the AKF in real-time for the
high-dimension of state vector and large number of
local Kalman filters.

We propose an alternative suboptimal filter (SF).
Similarly to the optimal AKF, the SF represents the
state estimate as a weighted sum of parameter-
conditional estimates (local Kalman estimates) with
the weights depending only on time instants and being

independent of current measurements y{)‘. In this

case all complex computations connected with the
determination of weights are based only on a priori
data about the system model (noise statistics, system

matrices, and parameter values & = 8;) and do not use

the results of measurements y(l)‘ . This gives an

opportunity to design a low-complexity SF that can be
easily implemented in real-time, especially in high-
dimension problems.

This paper is organized as follows. In Section 2, we
describe the optimal AKF for discrete-time dynamic
systems. In Section 3, we derive general equations for
the SF that represent a linear combination of local
Kalman filters. Each local Kalman filter is fused by
the minimum mean-square criterion. In Section 4, the
suboptimal filtering algorithm implementation steps
are given. In Section 5, the SF is applied for a special
class of linear systems with measurement
uncertainties. A solution of the joint detection-
estimation problem based on the SF is provided. In
Section 6, the SF is numerically tested in real-life
system models. In Section 7, conclusions are made.

2. OPTIMAL ADAPTIVE KALMAN FILTER

Consider the discrete-time linear dynamic system

with unknown parameters given by (1) and (2).
According to the Bayesian approach, it is assumed
that a prior probability for 8, p(@), is available,

pi=p(0i)20, i:l,...,N, p1+...+pN:1. (6)

If the unknown parameter & belongs to the
discrete space (2), then optimal mean-square state

sopt

estimate X" represents weighted sum

& (0)
2P =§5k , (7)

where N denotes the total number of values 6;

resulting from discretizing the continuous space of 4,
and

5y def .
o= (8 ®)

is local Kalman estimate matched to the linear system
(5), and

) ©)

represents conditional probability of 6; given yé‘.

The local Kalman estimates fc(i), i=1,..,N are

determined by the standard discrete Kalman filter
equations:

0 80 ok PR ) 3 <5,
0) — ) pd) (T 1 A A DT
MY =FABIFL +GLONGH

. o aT : N (T 5T
KW = MOF ) [H]((I)M]E’)H](c’) +R,(€’)} , (10)

PO = [In -K,§f>H,g">]M,g">, i=1,..,N,

where
£ =F(9), 6 =6,(8), &’ -0 (6),
) =,(8). B =R (9). an
7 =%(8), B =R(8), i=1,..N.

And the conditional probabilities p(@i ‘y{f ) i=

l,.., N are provided by the recursive Bayesian
formula [1,2,5]:

L(/:)P(Qi 1)’(1)(_1)

1r(o,pi”)

p(el.ly{)‘):

il

M=

1l
—

J
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k=12, p(a,.

yg)zpi, i=1,..N,
. ~n|-172 AV AT
a9 <[ el (50 (70) 50|

, . . v .
B0) _ p ) )
B =MD (HP) +RY,

(12)

50 = HPEOAD,, 11,0,

As already mentioned above, the AKF (7)-(12) can be
a very costly algorithm to implement, since it requires
complex calculations of the conditional probabilities

p(@i l y(])‘ ) at each time instant £ >0.

In this paper we develop an alternative SF for
systems (1) and (2). This filter does not require

k)
Yo )
at each time instant. And as a consequence, the

obtained filtering algorithm reduces the computational
burden and on-line computational requirements.

calculations of the conditional probabilities p(@,-

3. SUBOPTIMAL FILTER

As well as the optimal AKF (7)-(12) the SF filter
represents a weighted sum of the local Kalman
estimates (8),

N . . N .
)QIS‘Ub _ ch(cl))el(cl) , ch((l) =1, (13)
i=1 i=1

where [, is the nxn identity matrix, and c(]),...,,

c,EN ) are nxn weights depending only on time

instance k and being determined from the mean-
square criterion

2
Jk (C]((l) ,...,C]((N) ) = E“xk ')’e]iUb

) (14)

M=

p(6:)E|xe (6,) - 3| - min.

1 x

5

Remark 1: The weighted sums (7) and (13) are
different, since the AKF’s weights E,(ci) depend on

current measurements 5,@ =5,(ci)( y(l)‘ ) and thus they

can be computed only during the experiment, whereas
the SF’s weights c,(ci) can be pre-computed, as they
do not depend on measurements.

Theorem 1: (i) The weights c(l),...,c,(cN) are
given by the following linear algebraic equations

N - ~ (N
S0~ A )0, bt a3

i=

e =1, (15)
(ii) The overall error covariance

PR = E{ i ( e}s{ub)le’ G = 2 (16)
is given by

N N
- S 0RO 1= St 0
=l h=1

where
g ) T
f}c(hlj):E|:e]((hl) (e}j’f)) } hy i, j=1,...N (18)

are the local error cross-covariances of the filtering
errors

e,(chi) =X (91’7 )-Je]?) (19)

Proof of Theorem 1 is given in Appendix A.
Theorem 2: The local error cross-covariances
Pk(h’j) in (18) can be represented as

. . A\ .
i) _ gy _ gy (g0 \ )
B =100 - 1, (L) +12,. o)

xx,k

where
@ _ i (T
0, -7,
1%, = E[ 57 |, @1)

i A1) ~(NT
L = E[xg)xg) }
xx,k
are determined by the following recursive:

i i) 1 G u ) A6 A0
D, = KO, O 00000

L0 = FLD, A+ 0,0
60 .

0, = A0, A A0 80
o, A D]

@ ~N" L O A0
G PenDdr >

where K,(C’Bl stands for the local Kalman gains (10),

and
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) _ ) g )
Al(c]+1 - (In - Kk+1Hk+1 )Fk(]+1 >

)
Bl(c]+1

N, 3 . 2
A =khHihGPol

KO,

(23)
0 _ ) pi?
Dk+1 _Kk+1Rk+l ’

G _ ==’ Jh) _ ) _ ==
Lgc,o—xé')xé’ , LECJJ’E,O_L(;CiO—xO Xy,

i, j, h=1,.,N.

Proof of Theorem 2 is given in Appendix B.
Thus, the suboptimal filter is specified by the set of
recursive relations (13), (15), (20)-(23).

4. REAL-TIME IMPLEMENTATION OF THE
SUBOPTIMAL FILTER

The SF equations (10), (13)-(20) can be divided
into two parts:
Part 1 (“Off-line equations™):

M =FO PO ED + 6200 6
—1
i ; ~T . . N ,
K =uP i HPMPHY RO | oo
0= KPHOTHD, =1,
O A A AT
) +aholad

W) i) )
L);Jx,k - kalL

e, de-]
A = R, AT R,
oo ny Ky
8, - 4008, AT T
+ Bl(ci)Lng-l Al(ci "y Bl(ci)LEg;),k-lBl(cj 4
+c C,(C")T + DY D,E")T ,
49 <[1,- kPO O B0 -KOHOR,

. , . . 172 . - 172
- PuPapioll”, b =xRp”

h, i, j=1,.,N (25)
pk(lj) _ Z P pk(hu)
h=1
PP =10 1, L) 4 2,
h, i, j=1,..N (26)

o @y pl) _ pliN)
2 [BP =B =0,

N .
j=1,..N-1, zcl@ =1,.
i=1

We may note that the local Kalman gains K,ﬁi) in
(24), the local error cross-covariances Pk(hij) and

P9 in (25) and (26), and finally the SF’s weights

c,(ci) in (26) can be pre-computed, since they do not

depend on the current measurements y{)‘, but only
on the system matrices Fk("), G/Ei), H,((i), noise
statistics Q(i), R,(C"), initial conditions f(i), Po(i),
and also on the values of the parameter 6=6,,..., 6y,

which are part of system models (1) and (2).

Thus, once the measurement schedule has been
settled, the real-time implementation of the SF
requires only the computation of the local Kalman

fc,(CN ) and the final fusion of the

suboptimal estimate £*°

estimates fc,(cl) yeens

using only current measure-

ments  yy.
Part 2 (“On-line equations”):

{0 = FO0 K [ P EDS ]

)e(()i) _ féi),
i=1,..,N,

(27)
£ = D50 oy V),

Remark 2: Since 6 takes a finite number of
values € =0,,...,0y , the local Kalman estimates (27)
are separated for values of i=1,..., N. Each estimate

)2,(3) is found independently of other estimates

fc,(cl),...,fc,(j'l), )%,Ei+l), ...,)%,({N). Therefore, it can be

evaluated in parallel. The SF is also robust, since it
can be corrected even if one of the parallel local

Kalman estimate fc,({i) diverges. In this case, the

corresponding weight c,(f) in the weighted sum (27)

will tend to be zero (c,(ci) —)O), thereby indicating

that the diverging estimate fc,(ci) will be discarded in

the weighted sum (27).

In several applications, there may be a nonzero
probability that the measurement model takes N
sensor modes. This kind of problem is called a joint
classification-estimation problem [1]. One such
application is a joint detection-estimation when the
tracking of a target trajectory in space is considered
where the target may or may not be present, so that
the target must be detected as well as the trajectory
tracked [1,12]. The SF can be used for these
applications.
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5. AJOINT CLASSIFICATION-ESTIMATION
PROBLEM

In this section, we consider special linear dynamic
systems only with measurement uncertainties

Xpe1 = Fxp + Gevg, v ~N(0,0;),
X0 N]v(f091:)0)’ (28)
Vi = Hi(0)+we, wi ~N(0,R(6)),

where F;, Gy, Oy, Ry, and X; are known matrices
and initial mean vector, respectively; H, (@) and
R,(#) are known matrices time-functions, but

including the unknown parameter vector #, which
takes a finite set of values (sensor modes) (2).

In this case the state x; does not depend onthe
unknown parameter &, hence the mean-square
criterion (14) takes the following simple form

~sub 2

(c,(cl), ,c,((N ) ) X -Xk

{Zc@( 3 ﬂ[ﬁ@( Zj}

j=1
N o T
=tr ZC,E’)I’,f”)c,E’) — min, (29)
bt o)
where
N ST
Pk(lj)=E]:e/(C')(e§(j)) } L=l N (30)

are the local error cross-covariances of the filtering
errors e,(;) =X —fc,(;).

For system (28) and optimization criterion (29), the
SF is specified by Theorem 3.

Theorem 3: Let fc,(:) =% (6,

1

) be the local
Kalman estimates in (8). Then

(V)

(i) The optimal weights c,(cl),...,ck minimizing

criterion (29) are given by the equations

Nor o N
Zc,(c’)[iff)—}ﬁw)}:o, j=loN=1, ) =1,
-1 i=1

€3y

(ii) The overall error covariance P is given by

N . . AN\
B =Y RN (), 62)

i,j=1

where P,f” :Pk(i) is the local error covariance
determined by the standard Kalman filter equations

(24), and Pk(ij), i#j 1is the local cross-covariance

satisfying the following recursive:
R =[1, - 0m]
[ FO PR | GO o0 60T }
(33)
R o
2F220))
x| 1, -kPHD|
PN =p, ij=1,.,N, i=j.

6. EXAMPLES

6.1. Joint detection-estimation: damper harmonic
oscillator motion

The system model of the harmonic oscillator is

considered in [10, p. 104]:

0 1
q= o+, 0<i<t, (4
~w, —2a 1

n

where X, =[x1’, xz’,}T and x;, is position, and
Xy, Is velocity, v, is a scalar zero-mean white
Gaussian noise with known intensity q, E(v,v,)=
qé(t-s), xo~N (%, Ry)-

In this paper, we consider discrete time systems. So,

we change the continuous system model into a
discrete version.

1 At {o}
X = X, + Vi,
o2 1-2aae [ F T 1]E (35)
k=1,2,..100,
where v, ~ N(0, gAr).

The position is observed with uncertainty. Then the
measurement model is written as

Ve =0% 4 + W k=1,2,..100, (36)

where {w;} is zero-mean white Gaussian sequence,
w,~N(0,r), and the unknown parameter 6 takes
only two values, i.e.,

_ {.91 =1, p(6)=0.5 37)
32 = 0, p(02) =0.5.
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This represents the measurement model which takes
two sensor modes with &, =1 (signal-present) and

6, =0 (signal-absent).
We compare two adaptive filters: the optimal AKF

AOt

(9 )+c Xk (92) (38)
(,)_p( g) i=12
and the SF
7 =% (6) + D5 (6). 9

In this case N =2, and the solution of the linear
algebraic equations (31) coincides with the Bar-
Shalom-Campo formulas for the optimal combination
of two correlated estimates [19],

(1) (P(zz) P(ZI))(P(II) P(zz) P(lz) P(21))
(40)
2) =(Pk(11) _Pk(lz))(%(n) “7522) _Pk(lz) —Pk@‘))_]

The performance of the SF is expressed in terms of
computation load and loss in estimation accuracy with
respect to the AKF. The model parameters, noises
statistics, and initial conditions are subject to

=064, a=0.16, g=1,

% =[0.0 0.0]", B =diag[20 1.0],  (41)
At =0.01.

r=0.1,

Two cases were considered: in the first case, 6, =1
is the true parameter value in (36); in the second case,
&, =0 is the true parameter value. Figs. 1-4 present

the time histories of the filter characteristics for the
first case. Such time histories are a perfect analogy to
the second case. In Figs. 1 and 2 we show the mean-
square errors (MSEs) for the
2
t ~opt
AKF P —E[(xi,k &) } and

1
sub ~sub 2 :
SF BY =E (x,.,k —Xij ) , respectively.

As we see from Fig. 1, the difference between the
optimal and suboptimal MSEs for position is
negligible for the steady-state regime. Also the
suboptimal MSE for velocity in Fig. 2 is within a few
percentages of the optimum one. The numerical
simulations were performed using a computer with the
following specifications: Intel® Pentium® 4 CPU

2.8GHz 512Mb RAM. The computation time for

evaluation of the suboptimal state estimate 2'° is

3.8 times less than for optimal estimate xkp . This is

True parameter
value 6, = 1.0
05 B
gafl ST :
! S —— optimal MSE
---- suboptimal MSE
w v P
o] NSy
= 03f:
& ‘
| T
=
a
& 02 3
0.1 B
0 L 1 L ) .
o 20 80 100

40
Time k

Fig. 1. Comparison of MSEs of position estimates for

AKF and SF: P, (solid line); R P % (dashed
line).
1 T T T T T
— optimat MSE
T pramcer

0s s

Velocity-MSE

. ) . L ) .
40 [=1a] 80 100
Time k

Fig. 2. Comparison of MSEs of velocity estimate for

AKF and SF: PyY) (solid line); P53} (dashed
line).
3 . |
True parameter
Paosition value 6, = 1.0
25¢

Pasition and its estimate X

Close optimal and suboptimal estimates

ashi _

o I . . . . .
50 100
Time k

Fig. 3. Optimal and suboptimal position estimates:
Real position x4 (solid line); xlo‘,’: (dotted

line); P (dashed line).
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True parameter
Velocity value 81 =10 b

Velocity and its estimate %

Close-optimal and suboptimal estimates

1 L L L L

50 100
Time k

oW

Fig. 4. Optimal and suboptimal velocity estimates:

Real velocity x,; (solid line); fcg‘;: (dotted

line); %5 (dashed line).

due to the fact that the suboptimal weights c,(c’) in
(40) are pre-computed. It provides the best balance
between the computational efficiency and the desired
estimation accuracy. Figs. 3 and 4 present the result of
simulations of the optimal and suboptimal positions
and velocity estimates. Through Figs. 3 and 4 we can
also check the accuracy of SF from seeing that the
optimal and suboptimal estimates are very close to

each other.

6.2. Vehicle motion model with unknown initial
statistics
Consider a four-dimensional system with state x;,

x X — position
s — position
xkzl/y:yp o, 42)
; x — velocity
v, y — velocity

which represents a vehicle motion constrained to a
plane according to the following equation [1, p. 89]

S o o O
[T e
S O = O
[ = =]
- O ©

(43)

where §k NN(Oa qk)a Y73 NN(Os qr])
Assume that the initial state x, is zero-mean white

Gaussian vector.

Xo~N(%.R ) - (44)
The measurement equation is

b ooo + k=12,.,T, (45)
= Wi, =14yl
Yk 010 0 Xk k

where the measurement error {wk € Rz} is zero-
mean white Gaussian sequences with covariance
R, =diag(n, n).

We now wish to apply Theorems 1 and 2 to a case
is unknown. Let the

prior information on x, be given by four hypotheses

where the initial mean X, R?

H;, i=1,2,3,4:

%) (H)=%(0)=[-14 6 0014 —0.006] ,

% (Hy)=%(6,)=[-15 7 0018 -0.005],
%o (Hy)=%(62) =[- ]T 46)
% (H;)=X(6;)=[-13 4 0.020 -0.001],

%) (H,)=%0,)=[-12 5 0010 -0.005]

with the equal prior probabilities p(Hi):O.25 for
i=1, 2,3, 4. Initial covariance £, is the same for
all hypotheses, i.e., R)zdjag[l 1 10° 10'6},T=40‘

We describe here the results of simulations of two
filters: the optimal AKF and SF. Figs. 5-6 present the

time histories of the optimal and suboptimal estimates
of the state variables V,, V), whereas Figs. 7 and 8
exhibit the corresponding MSEs for the case when the
true initial mean X, =X, (H;) is assumed to be of

hypothesis H;. Such time histories are perfectly

o
=]
sl

x
o
=4
@

/ 11 True parameter
(s '.‘\ value = H,

0.018
0017 1
0016
0015}
0.014

0.013+

Optimal, suboptimal estimates and real values v

0.012

0.011 L L .
5 10 15 20 25 30 35 40

Time k

Fig. 5. Optimal and suboptimal estimates of velocity:
real velocity ¥, (solid line); VP! (dotted

line); V' (dashed line).
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-0.006 T T T —~r

¥

aaurt N
0008}
o009} A
001
aonf

oozt A A
A

0014}

! True parameter
velue = H,

Optimal, suboptimal estimates and real velocity v/

0015; y

0016 I \ . r I I
5 10 15 20 25 30 35 40

Fig. 6. Optimal and suboptimal estimates of velocity:
real velocity ¥, (solid line); I})f’pt (dotted

line); V5" (dashed line).

w
w

True parameter
1

value = H

Mean-square errors

N N I w w
~ w (=] w - L8]
T T T T

N
o
T

N
n
T

2.4
5
Time k

Fig. 7. MSEs of the optimal V" (solid line) and

suboptimal ¥**° (dotted line) estimates.

36

True parameter

34F value = H1

Mean-sguare errors
I
w [N

g
@

26

24 L L s s L .
5 10 15 20 25 30 35 40
Time k

Fig. 8. MSEs of the optimal V;’pt (solid line) and

suboptimal V;‘ub (dotted line) estimates.

similar to other hypotheses. The computation time for

asub

evaluation of £} Pt

is 10.75 times less than for X

7. CONCLUSION

In this paper, we have designed a new suboptimal
filter for linear discrete-time dynamic systems with
uncertainties. This filter represents a linear
combination of local Kalman filters with weights
depending only on time instance. Each local Kalman
filter is fused by the minimum mean-square criterion.
The proposed low-complexity filter has a parallel
structure and thus it is suitable for parallel processing.
Simulation results demonstrate high accuracy of the
designed filter.

APPENXIX A: PROOF OF THE THEOREM 1
2
Using (13) and (19) the criterion J, = E “xk 50

can be rewritten as

2
Jk:

P(Hh)E”xk () - 2
or{ e 0)-5"] [s0)- 5T |
ol o ()] (@]

M= M= I14=

h=l =1
Y (A1)
< @6 (DY :
=tr z_ o By (ck ) —)rné?,
ij=1 %k
where
50) _ - @i (N | ki)
1 1 . I
B? :thE[ek (<) }thPk Yoo @AY
h=1 h=1

The formulas (A1) and (A2) give the overall error
covariance (16).
Next substituting the expression

o =1, [ oo ]

into (A1) we obtain

N1, T NI . AT
=i d 3, 0RO + 3| P20 B ()
ij=1

i=1

SO () R (Y |
ij=1

T
N-1 N-1
(NN () | p(NN) pBNN )
i< S [ | S
i=1 j=1
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N T

- Z c,(;)Pk(NN) (c,(cl) ) — min (A3)
= (0 (N-1)
1,]=] Ck ..... Ck

Differentiating each summand of the criterion J; in

D D

(A3) with respect toc; ’, using the formulas

A = ( 0D )T - ( B )T ’

splrteor)-(a)
Ck -

aiz’) ,T( f;((ij)c](ci)ﬂ = O,
Ck -

Pl Y 56 O\ N =i\
= t,,[c]@ () H:c]g) [ B +(9)
k L

(A4)

and then setting the result to zero,
oJ
—k -0, i=1,...,N-1

ac,((’)

we obtain the linear algebraic equations (15) for
unknown weights c,(cl) yeres c,(CN ),
This completes the proof of Theorem 1.

APPENDIX B: PROOF OF THE THEOREM 2
Representation (19) immediately follows from (18).
The derivation of (22) and (23) is based on the

h def
recursive for the state x{" = x,(6,) and local

. def
estimate £/) = % (6;). Using (1) and (9) and

notations (13) we obtain
= HO G, o
0, = R0+ 8l - R0
= [F o - KEDFD ] 2
KE | 1+ 80
= [ I, -

R N (i N2 »
ey 1 (RO <605 )« R |

G) 10

k+1 k+l:|F(]) )

k1%k+1

>

D D+ i+
(B2)
where K,(Ql is the local Kalman gains (10), ¥, ~
N(0,,) and W, ~N(0,1,)are Gaussian white

noise sequences with identity covariances, and A,E’ 31 R

BV

)

vay> Ciapsand D,(Ql are given by (23).

According to the assumption that the white noises

vy and Wy

)

;; are mutually uncorrelated, equations

(B1) and (B2) yield linear difference equations for the
second-order moments (21) and (22).
This completes the proof of Theorem 2.
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