• Title/Summary/Keyword: harmonic differential operator

Search Result 7, Processing Time 0.019 seconds

RADIUS OF FULLY STARLIKENESS AND FULLY CONVEXITY OF HARMONIC LINEAR DIFFERENTIAL OPERATOR

  • Liu, ZhiHong;Ponnusamy, Saminathan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.819-835
    • /
    • 2018
  • Let $f=h+{\bar{g}}$ be a normalized harmonic mapping in the unit disk $\mathbb{D}$. In this paper, we obtain the sharp radius of univalence, fully starlikeness and fully convexity of the harmonic linear differential operators $D^{\epsilon}{_f}=zf_z-{\epsilon}{\bar{z}}f_{\bar{z}}({\mid}{\epsilon}{\mid}=1)$ and $F_{\lambda}(z)=(1-{\lambda)f+{\lambda}D^{\epsilon}{_f}(0{\leq}{\lambda}{\leq}1)$ when the coefficients of h and g satisfy harmonic Bieberbach coefficients conjecture conditions. Similar problems are also solved when the coefficients of h and g satisfy the corresponding necessary conditions of the harmonic convex function $f=h+{\bar{g}}$. All results are sharp. Some of the results are motivated by the work of Kalaj et al. [8].

INTRODUCTION OF T -HARMONIC MAPS

  • Mehran Aminian
    • The Pure and Applied Mathematics
    • /
    • v.30 no.2
    • /
    • pp.109-129
    • /
    • 2023
  • In this paper, we introduce a second order linear differential operator T□: C (M) → C (M) as a natural generalization of Cheng-Yau operator, [8], where T is a (1, 1)-tensor on Riemannian manifold (M, h), and then we show on compact Riemannian manifolds, divT = divTt, and if divT = 0, and f be a smooth function on M, the condition T□ f = 0 implies that f is constant. Hereafter, we introduce T-energy functionals and by deriving variations of these functionals, we define T-harmonic maps between Riemannian manifolds, which is a generalization of Lk-harmonic maps introduced in [3]. Also we have studied fT-harmonic maps for conformal immersions and as application of it, we consider fLk-harmonic hypersurfaces in space forms, and after that we classify complete fL1-harmonic surfaces, some fLk-harmonic isoparametric hypersurfaces, fLk-harmonic weakly convex hypersurfaces, and we show that there exists no compact fLk-harmonic hypersurface either in the Euclidean space or in the hyperbolic space or in the Euclidean hemisphere. As well, some properties and examples of these definitions are given.

Three Characteristic Beltrami System in Even Dimensions (I): p-Harmonic Equation

  • Gao, Hongya;Chu, Yuming;Sun, Lanxiang
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.311-322
    • /
    • 2007
  • This paper deals with space Beltrami system with three characteristic matrices in even dimensions, which can be regarded as a generalization of space Beltrami system with one and two characteristic matrices. It is transformed into a nonhomogeneous $p$-harmonic equation $d^*A(x,df^I)=d^*B(x,Df)$ by using the technique of out differential forms and exterior algebra of matrices. In the process, we only use the uniformly elliptic condition with respect to the characteristic matrices. The Lipschitz type condition, the monotonicity condition and the homogeneous condition of the operator A and the controlled growth condition of the operator B are derived.

  • PDF

Partially Implicit Chebyshev Pseudo-spectral Method for a Periodic Unsteady Flow Analysis (부분 내재적 체비셰브 스펙트럴 기법을 이용한 주기적인 비정상 유동 해석)

  • Im, Dong Kyun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.17-23
    • /
    • 2020
  • In this paper, the efficient periodic unsteady flow analysis is developed by using a Chebyshev collocation operator applied to the time differential term of the governing equations. The partial implicit time integration method was also applied in the governing equation for a fluid, which means flux terms were implicitly processed for a time integration and the time derivative terms were applied explicitly in the form of the source term by applying the Chebyshev collocation operator. To verify this method, we applied the 1D unsteady Burgers equation and the 2D oscillating airfoil. The results were compared with the existing unsteady flow frequency analysis technique, the Harmonic Balance Method, and the experimental data. The Chebyshev collocation operator can manage time derivatives for periodic and non-periodic problems, so it can be applied to non-periodic problems later.

Analytical solutions to magneto-electro-elastic beams

  • Jiang, Aimin;Ding, Haojiang
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.195-209
    • /
    • 2004
  • By means of the two-dimensional basic equations of transversely isotropic magneto-electro-elastic media and the strict differential operator theorem, the general solution in the case of distinct eigenvalues is derived, in which all mechanical, electric and magnetic quantities are expressed in four harmonic displacement functions. Based on this general solution in the case of distinct eigenvalues, a series of problems is solved by the trial-and-error method, including magneto-electro-elastic rectangular beam under uniform tension, electric displacement and magnetic induction, pure shearing and pure bending, cantilever beam with point force, point charge or point current at free end, and cantilever beam subjected to uniformly distributed loads. Analytical solutions to various problems are obtained.

LOWER ORDER EIGENVALUES FOR THE BI-DRIFTING LAPLACIAN ON THE GAUSSIAN SHRINKING SOLITON

  • Zeng, Lingzhong
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1471-1484
    • /
    • 2020
  • It may very well be difficult to prove an eigenvalue inequality of Payne-Pólya-Weinberger type for the bi-drifting Laplacian on the bounded domain of the general complete metric measure spaces. Even though we suppose that the differential operator is bi-harmonic on the standard Euclidean sphere, this problem still remains open. However, under certain condition, a general inequality for the eigenvalues of bi-drifting Laplacian is established in this paper, which enables us to prove an eigenvalue inequality of Ashbaugh-Cheng-Ichikawa-Mametsuka type (which is also called an eigenvalue inequality of Payne-Pólya-Weinberger type) for the eigenvalues with lower order of bi-drifting Laplacian on the Gaussian shrinking soliton.