• Title/Summary/Keyword: harmonic curvature

Search Result 77, Processing Time 0.022 seconds

One to One Resonance on the Quadrangle Cantilever Beam (정사각형 외팔보에서의 일대일 공진)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.851-858
    • /
    • 2005
  • The response characteristics of one to one resonance on the quadrangle cantilever beam in which basic harmonic excitations are applied by nonlinear coupled differential-integral equations are studied. This equations have 3-dimensional non-linearity of nonlinear inertia and nonlinear curvature. Galerkin and multi scale methods are used for theoretical approach to one-to-one internal resonance. Nonlinear response characteristics of 1st, 2nd, 3rd modes are measured from the experiment for basic harmonic excitation. From the experimental result, geometrical terms of non-linearity display light spring effect and these terms play an important role in the response characteristics of low frequency modes. Nonlinear nitration in the out of plane are also studied.

Application of curvature of residual operational deflection shape (R-ODS) for multiple-crack detection in structures

  • Asnaashari, Erfan;Sinha, Jyoti K.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.309-322
    • /
    • 2014
  • Detection of fatigue cracks at an early stage of their development is important in structural health monitoring. The breathing of cracks in a structure generates higher harmonic components of the exciting frequency in the frequency spectrum. Previously, the residual operational deflection shape (R-ODS) method was successfully applied to beams with a single crack. The method is based on the ODSs at the exciting frequency and its higher harmonic components which consider both amplitude and phase information of responses to map the deflection pattern of structures. Although the R-ODS method shows the location of a single crack clearly, its identification for the location of multiple cracks in a structure is not always obvious. Therefore, an improvement to the R-ODS method is presented here to make the identification process distinct for the beams with multiple cracks. Numerical and experimental examples are utilised to investigate the effectiveness of the improved method.

Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam (원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상)

  • Park Chul-Hui;Cho Chongdu;Kim Myoung-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.171-178
    • /
    • 2006
  • Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

ON GRADIENT RICCI SOLITONS AND YAMABE SOLITONS

  • Choi, Jin Hyuk;Kim, Byung Hak;Lee, Sang Deok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.219-226
    • /
    • 2020
  • In this paper, we consider gradient Ricci solitons and gradient Yamabe solitons in the warped product spaces. Also we study warped product space with harmonic curvature related to gradient Ricci solitons and gradient Yamabe solitons. Consequently some theorems are generalized and we derive differential equations for a warped product space to be a gradient Ricci soliton.

SOME RESULTS OF EXPONENTIALLY BIHARMONIC MAPS INTO A NON-POSITIVELY CURVED MANIFOLD

  • Han, Yingbo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1651-1670
    • /
    • 2016
  • In this paper, we investigate exponentially biharmonic maps u : (M, g) ${\rightarrow}$ (N, h) from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. We obtain that if $\int_{M}e^{\frac{p{\mid}r(u){\mid}^2}{2}{\mid}{\tau}(u){\mid}^pdv_g$ < ${\infty}$ ($p{\geq}2$), $\int_{M}{\mid}{\tau}(u){\mid}^2dv_g$ < ${\infty}$ and $\int_{M}{\mid}d(u){\mid}^2dv_g$ < ${\infty}$, then u is harmonic. When u is an isometric immersion, we get that if $\int_{M}e^{\frac{pm^2{\mid}H{\mid}^2}{2}}{\mid}H{\mid}^qdv_g$ < ${\infty}$ for 2 ${\leq}$ p < ${\infty}$ and 0 < q ${\leq}$ p < ${\infty}$, then u is minimal. We also obtain that any weakly convex exponentially biharmonic hypersurface in space form N(c) with $c{\leq}0$ is minimal. These results give affirmative partial answer to conjecture 3 (generalized Chen's conjecture for exponentially biharmonic submanifolds).

RIGIDITY OF IMMERSED SUBMANIFOLDS IN A HYPERBOLIC SPACE

  • Nguyen, Thac Dung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1795-1804
    • /
    • 2016
  • Let $M^n$, $2{\leq}n{\leq}6$ be a complete noncompact hypersurface immersed in ${\mathbb{H}}^{n+1}$. We show that there exist two certain positive constants 0 < ${\delta}{\leq}1$, and ${\beta}$ depending only on ${\delta}$ and the first eigenvalue ${\lambda}_1(M)$ of Laplacian such that if M satisfies a (${\delta}$-SC) condition and ${\lambda}_1(M)$ has a lower bound then $H^1(L^2(M))=0$. Excepting these two conditions, there is no more additional condition on the curvature.

SOME RESULTS OF p-BIHARMONIC MAPS INTO A NON-POSITIVELY CURVED MANIFOLD

  • HAN, YINGBO;ZHANG, WEI
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1097-1108
    • /
    • 2015
  • In this paper, we investigate p-biharmonic maps u : (M, g) $\rightarrow$ (N, h) from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. We obtain that if ${\int}_M|{\tau}(u)|^{{\alpha}+p}dv_g$ < ${\infty}$ and ${\int}_M|d(u)|^2dv_g$ < ${\infty}$, then u is harmonic, where ${\alpha}{\geq}0$ is a nonnegative constant and $p{\geq}2$. We also obtain that any weakly convex p-biharmonic hypersurfaces in space formN(c) with $c{\leq}0$ is minimal. These results give affirmative partial answer to Conjecture 2 (generalized Chen's conjecture for p-biharmonic submanifolds).

Free Vibrations of Arches in Rectangular Coordinates (직교좌표계에 의한 아치의 자유진동 해석)

  • Lee, Tae-Eun;Ahn, Bae-Soon;Kim, Young-Il;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.394.2-394
    • /
    • 2002
  • The differential equations governing free vibrations of the elastic arches with unsymmetric axis are derived in the rectangular coordinates rather than in polar coordinates, in which the effect of rotatory inertia is included. Frequencies and mode shapes are computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to validate theories and numerical methods developed herein. (omitted)

  • PDF

YANG-MILLS OR YANG-MILLS-HIGGS FIELDS OVER KAEHLER AND CONTACT MANIFOLDS

  • Park, Young-Soo;Suh, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.109-122
    • /
    • 2003
  • In this paper we give a characterization of an irreducible connection with harmonic curvature over a connected Kaehler manifold to be self-dual. Also we introduce new notions of $c_{i}-self-dual$ or Kaehler Yang-Mills connections on compact Kaehler manifolds and investigate some fundamental properties of this kind of new connections. Moreover, on a compact odd dimensional Riemannian manifold we give a property of generalized monopole.

SOME RESULTS IN η-RICCI SOLITON AND GRADIENT ρ-EINSTEIN SOLITON IN A COMPLETE RIEMANNIAN MANIFOLD

  • Mondal, Chandan Kumar;Shaikh, Absos Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1279-1287
    • /
    • 2019
  • The main purpose of the paper is to prove that if a compact Riemannian manifold admits a gradient ${\rho}$-Einstein soliton such that the gradient Einstein potential is a non-trivial conformal vector field, then the manifold is isometric to the Euclidean sphere. We have showed that a Riemannian manifold satisfying gradient ${\rho}$-Einstein soliton with convex Einstein potential possesses non-negative scalar curvature. We have also deduced a sufficient condition for a Riemannian manifold to be compact which satisfies almost ${\eta}$-Ricci soliton.