Bull. Korean Math. Soc. 40 (2003), No. 1, pp. 109-122

YANG-MILLS OR YANG-MILLS-HIGGS FIELDS
OVER KAEHLER AND CONTACT MANIFOLDS

YOUNG SO0 PARK AND YOUNG JIN SUH

ABSTRACT. In this paper we give a characterization of an irre-
ducible connection with harmonic curvature over a connected Kaeh-
ler manifold to be self-dual. Also we introduce new notions of
¢;-self-dual or Kaehler Yang-Mills connections on compact Kaehler
manifolds and investigate some fundamental properties of this kind
of new connections. Moreover, on a compact odd dimensional Rie-
mannian manifold we give a property of generalized monopole,

0. Introduction

Let M be a compact oriented Riemannian manifold, and P be a prin-
cipal fiber bundle with compact structure group G . Now we denote by
A a connection on a principal fiber bundle P and by F4 the curvature
form of A which is the adjoint bundle gp = Px 44g valued 2-form de-
fined on M, where g denotes the Lie algebra of the Lie group G. Then
Yang-Mills functional is defined by

(0.1) DM (A) = % / IE vl

It is known that the curvature two form F4 of A satisfies Euler-Lagrange
equation such that d4F4 = 0 and d4 * F4 = 0. The first of this equation
is called the second Bianchi identity and the second corresponds to the
critical points of the Yang-Mills Functional (0.1), that is, Yang-Mills
connection.
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When M is a Kaehler manifold of complex dimension 2, that is, a
Kaehler surface, the Hodge * operator determines a decomposition

AT M = A2@A?

of the space of 2-forms, where A% denotes the eigenspace subbundle of
the Hodge * operator corresponding to eigenvalues £1. So from 2 = id
it follows that the adjoint bundle gp = Px 449 valued 2-form F4 = dA+
$[AAA] can be splitted into F+ = $(Fa+*F4) and F~ = $(Fa—*Fy),
which are said to be the self-dual part and the anti-self-dual part of Fu
respectively. Thus a connection A on a principal fibre bundle P over
a Kaehler surface M being Yang-Mills is equivalent to d AF* = 0 or
daF~ =0.

When M is a compact oriented Riemannian manifold of odd dimen-
sion 3, we consider a 3-dimensional Yang-Mills-Higgs field and mag-
netic monopole (®, A), which satisfies Bogomolny equation such that
Fqg = £ % V4®. Then they correspond to respectively Yang-Mills
field and instanton of the curvature Fy = dA + [AAA], which satisfies
*Fy = £ F4 of the connection A defined on a Kaehler surface.

Now let us apply the above situation to higher dimensional mani-
folds. So in this paper as a base manifold we consider a higher dimen-
sional Kaehler manifold of complex dimension n or a higher dimensional
contact manifold 2n 4 1. Firstly we want to give a characterization
of self-duality of the connection in a higher dimensional Kaehler man-
ifold in terms of the second Chern class of the complex vector bundle
E = Pxgy(»)C". Namely we assert the following:

THEOREM 1. Let M be a connected Kaehler manifold. Let A be an
irreducible connection with harmonic curvature. Then

1 on-?
oz~ [ cwIng

where C(P) = TrFAAF 4 = 87%c¢, (E), E = PXsyC", where the equal-
ity holds if and only if A is a self-dual.

Secondly, we want to assert a property of the generalized monopole
(4, ¢) over a compact contact odd-dimensional Riemannian manifold.
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THEOREM 2. Let M be a compact oriented contact manifold and let
(A, #) be a generalized monopole. Then Fy = 0 and V4® = 0,

Moreover, in section 3 we introduce the notion of ¢;-self-dual connec-
tion and find some topological charge of the principal fiber bundle P over
a compact connected Kaehler manifold. Finally, we introduce the notion
of Kaehler Yang-Mills connection and also assert that this connection
could be a kind of Yang-Mills connection as the following:

THEOREM 3. If a connection V 4 is a Kaehler Yang-Mills connection,
then V 4 is a Yang-Mills connection.

1. A characterization of self-dual connections over Kaehler
manifolds

Let M be an n-dimensional compact complex manifold with a Kaehler
metric g. Let us denote by & its Kaehler form. When M is a compact
Kaehler surface, the Hodge * operator is involutive. Thus it is natural
that we consider a self-dual (or anti-self-dual) 2 form of the curvature
form F4. But in order to make a sense in a higher dimensional manifold
we have introduced an operator # as follows (See S. Kobayashi [5], pages
60-63).

Let us denote by A’ = 3" AP the exterior algebra of all smooth real
valued forms on M. Then we can define the Lipschitz operator L by
Lo = ¢N®, ¢ A’ and its adjoint A : A’—A’. Then it is known that x, L.
and A satisfy the following relations:

(1.1) A=L*"=x"YoLox (AL — LA)|gx = n — k, A(P) = n,

(12) *QIAA: — (_1)16(11716)’
q)k @n—k‘,
(13) * F)—m, k—O,l,---,n.

Now let us denote by A”? the space of C™ — (p, ¢) forms on M and by
AP? the space of primitive (p, q) forms, that is,

A? = {a€ AP Aa = 0}.
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Then the space of all of 2-forms A? can be decomposed in such a way
that
A% = AP0 4 A% L AP + ALY

where Aé;l denotes the space of (1,1)-type proportional to the Kaehler
form ¢. Now we introduce an operator # which is defined in such a way
that

2 (1;1"_—23‘ 2(n—1) xl=x 2 . —1 L(n——Z)
#: A° —5 A — A%, ie, #=x "0 .
(n—2)!

Then by the above definition of the operator # and a lemma given by
R.O. Well [7] we also assert the following

LEMMA 1.1.
(i) Ay’ ={acA’#a=—a},
(i) A2%° + A%? = {a€A?|#a = a},
(i) AL' = {a€A?|#a = (n—1)a}.

Then by Lemma 1.1 we can define a new operator # in such a way
that
N { # on A0 4 A02 4 ALl

o1 on A(lﬁl
Then the fact #2 = id implies that A% can be decomposed into the
self-dual part Ai = A%0 4 A%2 4 A},jl and the anti-self-dual part A(l)’l.
Hence the curvature form F4 also can be splitted into the self-dual part
Ft = F20 4 F02 4 FOQ® and anti-self-dual part F~ = F,''. That is,
we have

#FT =FT, and #F =-F~.

When the anti-self-dual part F'~ (or self-dual part F') vanishes, the
connection A is said to be self-dual (or anti-self-dual) respectively. Let
P be a principal fibre bundle over a compact Kaehler manifold M with
a compact semi-simple Lie group G. Let A be a connection on P. Then
in the paper [6] the second author proved that

PROPOSITION A. The following conditions are equivalent.
(i) A is Yang-Mills, i.e., dg x Fg =0,

(i) da#Fa4 =0,

(iii) 20%F%° 4+ nda(F'®®) =0,
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iv) O%F?% = —niosF9/(2n —1).
A

Let P be a principal fibre bundle over a compact Kaehler manifold
M with structure group G = SU(r). And let A be a connection in P.
Then it is well known that Yang-Mills functional 99M(A) is given by

1

oma) =5 [ oEansEd =5 [ 1R

where i—? is the volume of the compact Kaehler manifold M. Now we
have the following

LEMMA 1.2
—TrFsA* Fq = — TrFA/\FA/\(—Tfi—m' +2||Fg*|[Pvols
— (n - 2)|F°2®||%vols,

n

where voly = %.
Proof. The curvature F4 can be decomposed into the self-dual part
and the anti-self-dual part in such a way that
Fp=F*" 1 F0? 4 F'%¢ + F}.
Then the definition of # yields

(pn—2
#Fa = H(Fan ) = P20+ FO% 4 (n = DFO®® — Fy''.
n—2)!
By applying the Hodge * operator to the second equality we have

#(F?0 4+ FO%) 4+ (n~ 1) * F'o® — xFy!

(I,n-Z
= FAA——
Fa (n—2)!
_ (F2*0+F0’2 +FO®CD+F1’1)/\ P2
B 0 (n—2)
Then it follows
q)n—Z n—1
_ (2,0 0,2 0y 2
(1.4) *Fp=(F*"+F )/\(n-—2)!+F ®(n—l)!
@n—Z
1,1

O n—2)
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Combining the above equations, we have
(1.5)

Hn—2
TrFaA * Fp = Te(F?° + FO2)A(F?0 + FO?)A

(n —2)!
@n

’I‘rFol’l/\Fol’l/\m,

q)n
(n—1)

+ TrF'FO®

(1.6)
T\I‘FA/\FA/\L = rI‘r(F270 + Fo’z)/\(F2’0 + FO,2)/\ @n
(n—2)! (n—2)!
@n—2

(n—2)1"

@TZ

1,1 1,1
gy T R AR A

+ Tr FOQF°.

Combining (1.5) and (1.6), we get the Lemma 1.2. O

Now let us assume that a connection A on a Kaehler manifold M
is said to be with harmonic curvature if 20 is harmonic. Then by
Proposition A we have

0=04F?% = —nigsF°/2(n — 1).

Then from the irreducibility of the connection of M we have FO = 0.
Thus Lemma 1.2 becomes
@n

_ 1,12
~TeFAx F = —TrFAFA(n——2ﬁ + 2|F0 | volg.

From these formulas we complete the proof of our Theorem 1.

2. Generalized monopole over contact manifolds

In this section we will prove Theorem 2. Now let P—M be a G-
principal bundle over a complete open oriented Riemannian manifold of
dimension 2n + 1. We call M a contact manifold if M has a 1-form 7
such that ( A (2n + 1)-form nA(dn)™ is non-zero over M. In this case
such a 1-form 7 is called a contact form).

Set w = dn. Then the form w is a closed 2-form. Let (A, ®) be
a smooth connection on P and a smooth section of the adjoint bundle
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9p = Px aqg, called a Higgs field. In what follows, we call a pair (4, ®)
a configuration. The Yang-Mills-Higgs functional A(A, ®) is defined as

(2.1) A(A,®) = %/M{|FA|2 + |V 4®|*}dv,.

We call such a configuration Yang-Mills-Higgs field when the above func-
tional A is stationary at this configuration (See M. Itoh [3]).

The Euler-Lagrange equations for the first variation of A are
(2.2) dA(*FA) + [(I), *VACI)] =0, dA(*VAq)) =0.

Here Fy = dA + 3[AAA] is the curvature form of A and Vg, da
are the covariant derivative and the covariant exterior derivative in the
adjoint bundle gp, respectively. Furthermore * denotes the Hodge star
operator.

A configuration (A4, ®) which satisfies the Bogomolny equation
(2.3) *FA = iVA(I)

is said to be a (magnetic) monopole. It can be easily verified by using
the Bianchi identity and the Ricci identity that a monopole satisfies the
Euler-Lagrange equations and hence is Yang-Mills-Higgs.

DEeFINITION. Let P—M be a G-principal bundle over a complete
open contact manifold M. A configuration (A, ®) on P is called a gener-
alized monopole if (A, ®) satisfies the generalized Bogomolny equations

(2.4) *Fg = cVAPA" Y, *V 4P = cFanw™ 1,
where c is a constant.

It is clear that when dim M = 3, the formula (2.4) reduces to the
simple equation (2.3) which is free from any contact form on M. In this
section we want to prove the following

THEOREM 2.1. Let M be a compact oriented contact manifold and
let (A, ) be a generalized monopole. Then Fq =0, and V4® = 0.
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Proof. As is known to us, the generalized monopole satisfies
*V 4P = cFanw™ 1,
where w = dn is a closed 2-form. From this it follows
Va® = c* (Farw™ ).
Then by virtue of Bianchi identity and dw™~! = 0 we have

VAV a® = V4 (x(Farw™ 1))
= —cxda* (x(Farw™ 1))
=—cxds(Farw™ 1)
=—cCx* {clAFA/\w"~1 + FA/\dw”‘l}
= 0.

From this, integrating over M, we have
0= / (V' V4D, ®)du, = / IV 4®|2do,.
M M
From this and the Bogomolny equation it follows

*Fp =2V, =0.

Thus we conclude the proof of Theorem 2.1.

3. c-self-dual connections

In this section we introduce a new notion of c-self-dual connection
over compact Kaehler manifold and will investigate some fundamental
properties of this kind of connections. For this we define the following

notion.

DEFINITION 3.1. When *F4 = cFaA®" 2, we say the connection A
is said to be c-self-dual. More explicitly, the connection A is said to be

c;-self-dual (resp. anti-self-dual) if ¥F4 = c; FaADP™ 2.

Then the definition in above gives the following
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THEOREM 3.1. Any c-self-dual connection is an extremum of the
Yang-Mills energy functional. That is, it is a Yang-Mills connection.

Proof. From the definition of the c-self-dual connection we know that
*Fy = cFan®" 2
Then by the exterior derivative and Bianchi identity, we have
da(xFa) = cda(F4n®" %) = 0.

So by Proposition A in section 1 we assert that A is a Yang-Mills con-
nection. B

In particular, when dimcM = 2, that is M is a Kaehler surface,
c? = 1. So we can divide two cases in this situation. Then the connection
A is said to be self-dual if ¢ = 1 and the connection A is said to be anti-
self-dual if ¢ = —1.

On the other hand, from the proof of Lemma 1.1 we know that

n—2
#(F20 4+ FO2%) = (FPO 4+ FOOAC s, o1 = gy

(3.1) (FO®d) = (F'®®) 2y @ = 52y
n—2
*Fol’l :—Fol’l/\(i—_—f)'!y CSZ_(n+2)[‘

From the definition of c;-self-dual connections we have known that they
are Yang-Mills connections. Now let us introduce a generalized Yang-
Mills functional which is defined by

1

IMe(4) = 5 [ [IFIP+Ere.

Note that

0 < || F —cFAS" 2|2 = || F — cFA®™ 2|2
= || % F||?> — 2 < F,cFA®" "2 > 4+-c2|| FA®" 2|2
= || * F||? = 2¢(tr FAF)A®™ 2 + 2| FA®™ 2|2
= |FII? - 16cn°cy(B)AS™ 2 + (| F A" 22,
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where cz(E) denotes the second Chern class of the vector bundle £ =
Px SU(r) cr.
Integrating over M, we get

8nc / co( BYA®™2vol (M) <YM (A),
M

where the above equality holds if and only if *F; = ¢;FAA®" 2. More-
over in this case it is equivalent to the fact that the connection A is a
¢;-self-dual connection.

Now summing up all of situations in above, we summarize as follows:

THEOREM 3.2. Any c-self-dual connection is minimum of the gener-
alized Yang-Mills energy functional PIM-(A).

Now we define its lower bound in Theorem 3.1 by a topological charge
of the bundle P. Then it can be represented by

Q(P) = 82 / MCQ(E)/\@"_zvol(M)

= / Tr(FsAFa)A®™ 2vol(M).
M

In the above formula let us calculate more explicitly

Tr(FAAFA)AD™ 2 = Tr(F?0 + FOOA(F?0 + FOHAP" 2
+ TrFAFaANO™ 2 + TrFaAF3A®™ 2

1 1 1
= —TrFiAN* F1+ —TrFyA « Fo + —TrF3A x F3
Cy C2 C3

1 2, 1 2, 1 2

F L Fsl“.
SRR + IRl + B
Thus the topological charge Q(P) of the bundle P becomes

Q(P) = / MTr(F/\F)/\@“-%ol(M)

- / (LIF2 + SRl + — || F3]P)wol (M),
M C C2 C3
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On the other hand, we know that the Yang-Mills functional is given
by

DI4) = %/M ~Tr(FaN x Fa)
= %/M(“F2,0|[2 +[|FO2)2 4 ||FY1 )2 vol (M)
= %/M(”FIHZ + ”F'2||2 + “F3||2)’UOZ(M)

From this we are able to write respectively the following formulas:

(3.2)
2DM(A) = QB + [ (1= DRI+ (- D) FIPywoi()
M 3

=aQ®)+ [ (2= n)lF? + 2B ])uol ()

(3.3)
2WM(A) = c2Q(P / (1= DR+ (1~ 2)|Fl* ool
= QP / (IR + 2] B ool (M

(3.4)

2WMA) = aQ®)+ [ {1 = DRI+ = )Rl fool(M)
= Q@)+ [ (2RI + nl Rl ol()

Now let us denote by Fi, F, and F3 in such a way that
Fy=F?0 4+ F%% F, = F'®, and F3 = Fy''.

Then from (3.2), (3.3) and (3.4) together with the definition 3.1 we assert
the following respectively.
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THEOREM 3.3. Let M be a compact Kaehler manifold and A be a
connection on a principal fiber bundle P over M. Then we have the
followings:

(i) When F, =0, 99M(A) = 3¢1Q(P) holds on M if and only if the
connection A is c3-self-dual.

(ii) PIM(A) = 3c2Q(P) holds on M if and only if F = FO®®. That
is, the connection A is cy-self-dual.

(i) PM(A) = $c3Q(P) holds on M if and only if the connection A
is c3-self-dual.

REMARK 3.1. In paper [4] K. Galicki and Y.S. Poon have considered
the notions of c-self-dual connection on quaternionic Kaehler manifold
M. In such a case the topological charge Q(P) was defined by the
first Pontrjagin class of the bundle P of M and have obtained some
fundamental properties different from ours.

4. A Kaehler Yang-Mills connection

In this section we give a complete proof of Theorem 3. In order to
prove this let us introduce a new notion of Kaehler Yang-Mills connec-
tion.

DEFINITION 4.1. A connection A on a Riemannian vector bundle
over a compact Kaehler manifold is called a Kaehler Yang-Mills connec-
tion if A4 (FaA®™"2) = 0, where ® is the Kaehler form.

THEOREM 4.1. If a connection A is a Kaehler Yang-Mills connection,
then A is a Yang-Mills connection.

Proof. From A a(FaA®™2) = 0 we should verify that
64F4 =0,

Since M is compact, the assumption gives §4(F4A®""2) = 0. Then
from this it sufficies to show that 4 F4 = 0. By the formulas

q)k _ (I)n—k
*(F) - (n—k)V

and
S A(Fan®™2) = 54 {F A Er o
(n—2)l A4 T oAVART T
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we should verify that the formula §4{FsA * 2} = 0 is equivalent to
ViF;; = 0. Now let us calculate the following:

Fun % (9?) =(—1)#Zi jﬂjﬂi/\ej/\iel/\- S AG"AG'A--N"}
(n-2,0-2)
(a.b) (2,8)

(L \# A A ADLA. . AARADLA. . AT
=(~1) [ZabFaba A NOIA- - -NOTAGA- - -AB
(a,b) (e,8)
Fos02 AP AG A - - NI A A - -AG?
+ g Fas
(a,b) (@,8)
_ ,—/\—“ /__A—-?
+3 " Faal*ABNG'A- NI A- - -AB,

where # is given by # = E—("Z—_—l) +1‘—5—2 = # and 4,7,---:1,---,n,1,
-+, . Thus §4(FaA * ®2) = 0 holds if and only if
{a,b) (Ciﬁ)
(4.1) 0=>_ bchcbeb/\?ﬂ/\- CAGPAGIA- AP
(af) (ciﬁ)
+ Zv ﬁvvoe_ﬂ/\bl/\- CAOTAGLA- - NG
(a,b) (a.8)
+3° Vo F o BOAGIA- - -ANOPABEA - -AD™
c,a
(a,b) (a,8)

=YV Far 8 N6 A NOTABA- NG,
v,a

(a,b)
where 7+ means “delete 8% and 6° from 6'A---AO™”. Thus (4.1) im-
plies
b b
—— ———
D VeFeal* A ANI* = V. Fuy6°AG*A- N =0,
¢ Y

e N e N,
D VeFa8 A8 A A" =V Fyy8°A0 A NG =0,
c Y
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b
where ~-- - also denotes “delete #° among 8'A. - -A™". This gives
4.2 V.F, VL F,, =0.
( ) Zc » 1 Z’Y ¥4 b
Also (4.1) gives the following
_ r_—j‘—:\ - r_—iﬁ_
D VAFyg0P A A AT+ Vo FegBP A A NG = 0,
0% c
8 B

_ _
D VAFy BN A AT+ VoFeoB2AG A A" = 0.
v c
Then from this it follows
(4.3) ZWVA,FW +) VeFea =0.

Thus summing up the above formulas, we have the followings

ViF, =0, ViF;y =0
2 i v

for any index 4,4,---:1,--+,n,1,--- 7. This implies 64 F4; = 0. That is,
the curvature F4 satisfies 4 F'4 = 0. The connection A is a Yang-Mills
connection. Thus it completes the proof of Theorem 4.1. d
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