• Title/Summary/Keyword: harmonic behavior

Search Result 200, Processing Time 0.022 seconds

Study of Electron Injection of Pentacene Field Effect Transistor with Au Electrodes by C-V and SHG Measurements

  • Lim, Eun-Ju;Manaka, Takaaki;Tamura, Ryosuke;Ohshima, Yuki;Iwamoto, Mitsumasa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.151-155
    • /
    • 2008
  • Using pentacene field effect transistors (FETs) with Au source and drain electrodes, electron injection from the Au electrodes into the pentacene was investigated. The capacitance-voltage (C-V) and optical second harmonic generation (SHG) measurements were employed. Electron injection from the Au electrodes was suggested by the hysteresis behavior with the C-V characteristics and slowly decaying SHG signal under DC biasing, A mechanism of hole-injection assisted by trapped electrons is proposed. To confirm electron injection process, light-emitting behavior under the application of AC applied voltage was observed.

Rocking Vibration of Rigid Block Structure Accompaning Sliding Motion - In the Case of Two Dimensional Harmonic Excitation with Different Frequencies - (미끄럼운동을 동반하는 강체 블록 구조물의 로킹진동 - 수평방향과 수직방향의 여진진동수가 다른 경우에 대하여 -)

  • Jeong, Man-Yong;Kim, Jeong-Ho;Yang, In-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.879-889
    • /
    • 2003
  • This research deals with the nonlinearities of rocking vibration associated with impact and sliding on the rocking behavior of rigid block under two dimensional sinusoidal excitation which has different frequencies in two excitation direction. The varied excitation direction influences not only the rocking response but also the sliding motion and the rocking response shape. Chaotic responses are observed in wider excitation amplitude region, when the frequencies in each excitation direction are different. The complex behavior of chaotic response, in the phase space, is related with the trajectory of base excitation and sliding motion.

A Numerical Study on Acoustic Behavior in Baffled Combustion Chambers (배플이 장착된 로켓엔진 연소기의 음향장 해석)

  • Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.966-975
    • /
    • 2002
  • Acoustic behavior in baffled combustion chambers is numerically investigated by adopting linear acoustic analysis. Partial blade baffle, which is a variant of blade baffle, and hub-blade baffle with six blades are employed as baffle models. Through modal analysis, natural frequencies of each acoustic mode in baffled chambers are calculated and the reduction in natural frequencies caused by baffle installation is examined. Through harmonic analysis, acoustic pressure responses of each chamber to acoustic oscillating excitation are shown. The first tangential mode is found to be most sensitive to acoustic oscillation. Acoustic damping effect of baffle is quantified by damping factor. Damping effect of hub-blade baffle is the most appreciable and damping factor of partial blade baffle is much lower than that of blade baffle. Damping effect of six-blade baflle on the second tangential mode is as much as on the first tangential mode and hub-blade baffle can damp out appreciably the first tangential as well as the first radial mode with the aid of hub.

The Effects of the Stiffness Mistuning on the Dynamic Response of Periodic Structures under a Harmonic Force (강성 불균일이 조화가진을 받는 주기적 구조물의 동특성에 미치는 영향)

  • Ahn, T.K.;Shkel A.M.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1355-1360
    • /
    • 2005
  • Periodic structures can be applied as a MEMS(micro-electro-mechanical system) sensor or actuator due to low energy loss and wideband frequency response. The dynamic behavior of a mistuned periodic structure Is dramatically changed from that of a perfectly tuned periodic structure. The effects of mistuning, coupling stiffness, and driving point on the forced vibration responses of a simple periodic structure ate investigate4 through numerical simulations. On the basis of that, one can design effective and reliable MEMS components using periodic structures.

Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.545-554
    • /
    • 2020
  • The present paper explores nonlinear dynamical properties of piezo-magnetic beams based on a nonlocal refined higher-order beam formulation and piezoelectric phase effect. The piezoelectric phase increment may lead to improved vibrational behaviors for the smart beams subjected to magnetic fields and external harmonic excitation. Nonlinear governing equations of a nonlocal intelligent beam have been achieved based upon the refined beam model and a numerical provided has been introduced to calculate nonlinear vibrational curves. The present study indicates that variation in the volume fraction of piezoelectric ingredient has a substantial impact on vibrational behaviors of intelligent nanobeam under electrical and magnetic fields. Also, it can be seen that nonlinear free/forced vibrational behaviors of intelligent nanobeam have dependency on the magnitudes of induced electrical voltages, magnetic potential, stiffening elastic substrate and shear deformation.

A Numerical Study on Acoustic Behavior in Gas Turbine Combustor with Acoustic Resonator (음향공명기가 장착된 가스터빈 연소실의 음향장 해석)

  • Park, I-Sun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.95-102
    • /
    • 2005
  • Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed. mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes.

Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations

  • Djamel Eddine Lafi;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Mohamed Bourada;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.103-119
    • /
    • 2024
  • The present research investigates the thermodynamically bending behavior of FG sandwich plates, laying on the Winkler/Pasternak/Kerr foundation with various boundary conditions, subjected to harmonic thermal load varying through thickness. The supposed FG sandwich plate has three layers with a ceramic core. The constituents' volume fractions of the lower and upper faces vary gradually in the direction of the FG sandwich plate thickness. This variation is performed according to various models: a Power law, Trigonometric, Viola-Tornabene, and the Exponential model, while the core is constantly homogeneous. The displacement field considered in the current work contains integral terms and fewer unknowns than other theories in the literature. The corresponding equations of motion are derived based on Hamilton's principle. The impact of the distribution model, scheme, aspect ratio, side-to-thickness ratio, boundary conditions, and elastic foundations on thermodynamic bending are examined in this study. The deflections obtained for the sandwich plate without elastic foundations have the lowest values for all boundary conditions. In addition, the minimum deflection values are obtained for the exponential volume fraction law model. The sandwich plate's non-dimensional deflection increases as the aspect ratio increases for all distribution models.

Vibratory Loads Behavior of a Rotor in High Advance Ratios (고속 전진비 조건에서의 로터 진동하중 특성 연구)

  • Na, Deok Hwan;You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.237-243
    • /
    • 2018
  • In this study, the hub vibration load characteristic is evaluated for a rotor in high advance ratio conditions while investigating blade loads through the structural load prediction and harmonic analysis. Numerical studies are performed to validate the wind tunnel test data performed in NASA as the rotor advance ratios are varied from 0.40 to 0.71. A good correlation is obtained for rotor performance calculation at the range of advance ratios considered. It is observed that the hub vibration loads remain almost unchanged when the advance ratios are higher than 0.5, even though the amplitudes of blade structural loads become larger with increasing advance ratios. A harmonic analysis on blade moments is confirmed that the dominant structural mode is 3/rev component for flap bending moments and 4/rev for lag bending moments. The reason is due to the tendency of the second flap and lag mode frequencies which approach 3/rev and 4/rev, respectively, as the advance ratios are increased.

Impact of soft and stiff soil interlayers on the pile group dynamic response under lateral harmonic load

  • Masoud Oulapour;Sam Esfandiari;Mohammad M. Olapour
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.583-596
    • /
    • 2023
  • The interlayers, either softer or stiffer than the surrounding layers, are usually overlooked during field investigation due to the small thickness. They may be neglected through the analysis process for simplicity. However, they may significantly affect the dynamic behavior of the soil-foundation system. In this study, a series of 3D finite-element Direct-solution steady-state harmonic analyses were carried out using ABAQUS/CAE software to investigate the impacts of interlayers on the dynamic response of a cast in place pile group subjected to horizontal harmonic load. The experimental data of a 3×2 pile group testing was used to verify the numerical modeling. The effects of thickness, depth, and shear modulus of the interlayers on the dynamic response of the pile group are investigated. The simulations were conducted on both stiff and soft soils. It was found that the soft interlayers affect the frequency-amplitude curve of the system only in frequencies higher than 70% of the resonant frequency of the base soil. While, the effect of stiff interlayer in soft base soil started at frequency of 35% of the resonant frequency of the base soil. Also, it was observed that a shallow stiff interlayer increased the resonant amplitude by 11%, while a deep one only increased the resonant frequency by 7%. Moreover, a shallow soft interlayer increased the resonant frequency by 20% in soft base soils, whereas, it had an effect as low as 6% on resonant amplitude. Also, the results showed that deep soft interlayers increased the resonant amplitude by 17 to 20% in both soft and stiff base soils due to a reduction in lateral support of the piles. In the cases of deep thick, soft interlayers, the resonant frequency reduced significantly, i.e., 16 to 20%. It was found that the stiff interlayers were most effective on the amplitude and frequency of the pile group.

Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Jeong-Soo;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF