• 제목/요약/키워드: harmful dinoflagellates

검색결과 60건 처리시간 0.024초

Interactions between common heterotrophic protists and the dinoflagellate Tripos furca: implication on the long duration of its red tides in the South Sea of Korea in 2020

  • Eom, Se Hee;Jeong, Hae Jin;Ok, Jin Hee;Park, Sang Ah;Kang, Hee Chang;You, Ji Hyun;Lee, Sung Yeon;Yoo, Yeong Du;Lim, An Suk;Lee, Moo Joon
    • ALGAE
    • /
    • 제36권1호
    • /
    • pp.25-36
    • /
    • 2021
  • The mixotrophic dinoflagellate Tripos furca causes red tides in the waters of many countries. To understand its population dynamics, mortality due to predation as well as growth rate should be assessed. Prior to the present study, the heterotrophic dinoflagellates Noctiluca scintillans, Polykrikos kofoidii, Protoperidinium steinii, and mixotrophic dinoflagellate Fragilidium subglobosum were known to ingest T. furca. However, if other common heterotrophic protists are able to feed on T. furca has not been tested. We explored interactions between T. furca and nine heterotrophic dinoflagellates and one naked ciliate. Furthermore, we investigated the abundance of T. furca and common heterotrophic protists in coastal-offshore waters off Yeosu, southern Korea, on Jul 31, 2020, during its red tide. Among the tested heterotrophic protists, the heterotrophic dinoflagellates Aduncodinium glandula, Luciella masanensis, and Pfiesteria piscicida were able to feed on T. furca. However, the heterotrophic dinoflagellates Gyrodiniellum shiwhaense, Gyrodinium dominans, Gyrodinium jinhaense, Gyrodinium moestrupii, Oblea rotunda, Oxyrrhis marina, and the naked ciliate Rimostrombidium sp. were unable to feed on it. However, T. furca did not support the growth of A. glandula, L. masanensis, or P. piscicida. Red tides dominated by T. furca prevailed in the South Sea of Korea from Jun 30 to Sep 5, 2020. The maximum abundance of heterotrophic dinoflagellates in the waters off Yeosu on Jul 31, 2020, was as low as 5.0 cells mL-1, and A. glandula, L. masanensis, and P. piscicida were not detected. Furthermore, the abundances of the known predators F. subglobosum, N. scintillans, P. kofoidii, and Protoperidinium spp. were very low or negligible. Therefore, no or low abundance of effective predators might be partially responsible for the long duration of the T. furca red tides in the South Sea of Korea in 2020.

삭시톡신과 그 유사체: 독성, 분석법, 국내외 오염도 및 관리 동향 (Saxitoxin and Its Analogues: Toxicity, Analytical Method, Occurrence and Safety Management)

  • 이상유;임주희;우소영;최화영;박수빈;유차니;전향숙
    • 한국식품위생안전성학회지
    • /
    • 제35권6호
    • /
    • pp.521-534
    • /
    • 2020
  • 마비성 패독(paralytic shellfish poisoning, PSP)에 의한 중독은 와편모조류(Dinoflagellates)가 생성하는 saxitoxin (STX)이 이매패류 등의 먹이활동에 의해 축적되고 이를 사람이 섭취함으로써 발생한다. 최근 분석기술의 발전으로 와편모조류가 STX외에도 gonyautoxin (GTX) group 및 N-sulfo carbamoyl toxins (C toxin) group 등 다양한 유사체들을 생성하는 것으로 보고되고 있다. 이에 CODEX, EFSA에서는 STX외 유사체의 안전관리를 위해 STX 및 유사체를 STX group으로 관리하고자 하는 움직임을 보이고 있다. 국내의 경우도 STX 유사체를 생성하는 조류의 발생이 이미 보고되고 있으며 실제 홍합에서 유사체의 오염사례도 소수 보고되고 있다. 따라서 국제적인 움직임에 발맞추어 국내에서도 STX 및 유사체의 group 관리를 위한 준비가 필요할 것으로 사료된다. 본 연구에서는 STX 및 유사체의 체계적인 모니터링 및 안전관리의 기반을 마련하고자 STX 및 유사체의 이화학적 특성, 생성조류, 국내외 발생현황, 독성 및 상대독성계수, 분석법, 오염현황 및 관리현황에 대한 폭넓은 검토를 수행하고자 하였다.

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: III. Metazooplankton and their grazing impacts on red-tide organisms and heterotrophic protists

  • Lee, Moo Joon;Jeong, Hae Jin;Kim, Jae Seong;Jang, Keon Kang;Kang, Nam Seon;Jang, Se Hyeon;Lee, Hak Bin;Lee, Sang Beom;Kim, Hyung Seop;Choi, Choong Hyeon
    • ALGAE
    • /
    • 제32권4호
    • /
    • pp.285-308
    • /
    • 2017
  • Cochlodinium polykrikoides red tides have caused great economic losses in the aquaculture industry in many countries. To investigate the roles of metazooplankton in red tide dynamics of C. polykrikoides in the South Sea of Korea, the abundance of metazooplankton was measured at 60 stations over 1- or 2-week intervals from May to November 2014. In addition, the grazing impacts of dominant metazooplankton on red tide species and their potential heterotrophic protistan grazers were estimated by combining field data on the abundance of red tide species, heterotrophic protist grazers, and dominant metazooplankton with data obtained from the literature concerning ingestion rates of the grazers on red tide species and heterotrophic protists. The mean abundance of total metazooplankton at each sampling time during the study was 297-1,119 individuals $m^{-3}$. The abundance of total metazooplankton was significantly positively correlated with that of phototrophic dinoflagellates (p < 0.01), but it was not significantly correlated with water temperature, salinity, and the abundance of diatoms, euglenophytes, cryptophytes, heterotrophic dinoflagellates, tintinnid ciliates, and naked ciliates (p > 0.1). Thus, dinoflagellate red tides may support high abundance of total metazooplankton. Copepods dominated metazooplankton assemblages at all sampling times except from Jul 11 to Aug 6 when cladocerans and hydrozoans dominated. The calculated maximum grazing coefficients attributable to calanoid copepods on C. polykrikoides and Prorocentrum spp. were 0.018 and $0.029d^{-1}$, respectively. Therefore, calanoid copepods may not control populations of C. polykrikoides or Prorocentrum spp. Furthermore, the maximum grazing coefficients attributable to calanoid copepods on the heterotrophic dinoflagellates Polykrikos spp. and Gyrodinium spp., which were grazers on C. polykrikoides and Prorocentrum spp., respectively, were 0.008 and $0.047d^{-1}$, respectively. Therefore, calanoid copepods may not reduce grazing impact by these heterotrophic dinoflagellate grazers on populations of the red tide dinoflagellates.

New Algicidal Compounds from a Marine Algicidal Bacterium against Cochlodinium polykrikoides

  • Jeong, Seong-Yun;Kim, Min-Ju;Lee, Sang-Youb;Son, Hong-Joo;Lee, Sang-Joon
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2006년도 추계 학술발표회 발표논문집
    • /
    • pp.285-289
    • /
    • 2006
  • In screening of algicidal bacteria, we isolated a marine bacterium which had potent algicidal effects on harmful algal bloom (HAB) species. This organism was identified as a strain very close to Bacillus subtilisby 16S rRNA gene sequencing. This bacterium, Bacillus sp. SY-1, produces very active algicidal compounds against the harmful dinoflagellate Cochlodinium polykrikoides. We isolated three algicidal compounds (MS 1056, 1070, 1084) and identified them by amino acid analyses, fast atom bombardment mass spectrometry (FAB-MS), infrared spectroscopy (IR), $^1H$, $^{13}C$, and extensive two-dimensional nuclear magnetic resonance (2D NMR) techniques including $^1H-^{15}N$ HMBC analysis. One of them, MS 1056, contains a b-amino acid residue with an alkyl side chain of $C_{15}$. MS 1056, 1070, and 1084 showed algicidal activities against C. polykrikoides with an $LC_{50}$ (6 hrs) of 2.3, 0.8, $0.6\;{\mu}g/ml$, respectively. These compounds also showed significant algicidal activities against other harmful dinoflagellates and raphidophytes. In contrast, MS 1084 showed no significant growth inhibition against various organisms coexisting with HAB species in natural environments, including bacteria, eukaryotic microalgae, and cyanobacteria, although it inhibited growth of some fungi and yeasts. These observations imply that algicidal bacterium Bacillus sp. SY-1 and its algicidal compounds could play an important role in regulating the onset and development of HABs in the natural environments.

  • PDF

The Dinoflagellate Genera Brachidinium, Asterodinium, Microceratium and Karenia in the Open SE Pacific Ocean

  • Gomez, Fernando
    • ALGAE
    • /
    • 제21권4호
    • /
    • pp.445-452
    • /
    • 2006
  • The morphometry and distribution of the unarmoured dinoflagellates Brachidinium capitatum F.J.R. Taylor, Asterodinium gracile Sournia, Microceratium orstomii Sournia and the toxic species Karenia papilionacea Haywood et Steidinger have been investigated in open waters of the SE Pacific Ocean. The genus Microceratium Sournia is recorded for the first time since the initial description. These taxa showed a high morphological similarity and they may correspond to life stages of a highly versatile single species that is able to project body extensions. Karenia papilionacea showed the higher abundance in the surface waters of the more productive areas (the Marquesas Archipelago and the Perú-Chile Current). Brachidinium capitatum and K. papilionacea often co-occurred, predominating B. capitatum in offshore surface waters. Asterodinium gracile was recorded at the bottom of the euphotic zone (down to 210 m depth), with a shallower distribution in more productive areas. Intermediate specimens of Asterodinium-Brachidinium-Karenia, with variable disposition and size of the body extensions were illustrated.

Reevaluation of the Generation of Reactive Oxygen Species (ROS) by Cochlodinium polykrikoides as a Fish Killing Factor; Comparison with Chattonellla marina

  • Kim, Dae-Kyung;Oda, Tatsuya;Muramatsu, Tsuyoshi;Honjo, Tsuneo
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2001년도 추계 수산관련학회 공동학술대회발표요지집
    • /
    • pp.206-207
    • /
    • 2001
  • Cochlodinium polykrikoides is one of the most harmful red tide dinoflagellates and is highly toxic to fish. Red tides due to this dinoflagellate have been reported in Korea, Japan, and other countries, and frequently cause severe damage to fish farming. Recently study has suggested that C. polykrikoides generates reactive oxygen species (ROS) such as superoxide anion ($O_{2-}$) and hydrogen peroxide ($H_2O_2$), and the ROS-mediated ichthyotoxicity has been proposed. (omitted)

  • PDF

Growth and ingestion rates of heterotrophic dinoflagellates and a ciliate on the mixotrophic dinoflagellate Biecheleria cincta

  • Yoo, Yeong Du;Yoon, Eun Young;Lee, Kyung Ha;Kang, Nam Seon;Jeong, Hae Jin
    • ALGAE
    • /
    • 제28권4호
    • /
    • pp.343-354
    • /
    • 2013
  • To explore the interactions between the mixotrophic dinoflagellate Biecheleria cincta (previously Woloszynskia cincta) and heterotrophic protists, we investigated whether the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Gyrodinium spirale, Oxyrrhis marina, and Polykrikos kofoidii, and the ciliate Strobilidium sp. were able to feed on B. cincta. We also measured growth and ingestion rates of O. marina and Strobilidium sp. on B. cincta as a function of prey concentration. In addition, these rates were measured for other predators at single prey concentrations at which the growth and ingestion rates of O. marina and Strobilidium sp. were saturated. All grazers tested in the present study were able to feed on B. cincta. B. cincta clearly supported positive growth of O. marina, G. dominans, and Strobilidium sp., but it did not support that of G. moestrupii, G. spirale, and P. kofoidii. The maximum growth rates of Strobilidium sp. and O. marina on B. cincta (0.91 and 0.49 $d^{-1}$, respectively) were much higher than that of G. dominans (0.07 $d^{-1}$). With increasing the mean prey concentration, the specific growth rates of O. marina and Strobilidium sp. on B. cincta increased, but either became saturated or slowly increased. The maximum ingestion rate of Strobilidium sp. (1.60 ng C $predator^{-1}\;d^{-1}$) was much higher than that of P. kofoidii and O. marina (0.55 and 0.34 ng C $predator^{-1}\;d^{-1}$) on B. cincta. The results of the present study suggest that O. marina and Strobilidium sp. are effective protistan grazers of B. cincta.

Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum

  • Lee, Kyung Ha;Jeong, Hae Jin;Yoon, Eun Young;Jang, Se Hyeon;Kim, Hyung Seop;Yih, Wonho
    • ALGAE
    • /
    • 제29권2호
    • /
    • pp.153-163
    • /
    • 2014
  • Mesodinium rubrum is a cosmopolitan ciliate that often causes red tides. Predation by heterotrophic protists is a critical factor that affects the population dynamics of red tide species. However, there have been few studies on protistan predators feeding on M. rubrum. To investigate heterotrophic protists grazing on M. rubrum, we tested whether the heterotrophic dinoflagellates Gyrodiniellum shiwhaense, Gyrodinium dominans, Gyrodinium spirale, Luciella masanensis, Oblea rotunda, Oxyrrhis marina, Pfiesteria piscicida, Polykrikos kofoidii, Protoperidinium bipes, and Stoeckeria algicida, and the ciliate Strombidium sp. preyed on M. rubrum. G. dominans, L. masanensis, O. rotunda, P. kofoidii, and Strombidium sp. preyed on M. rubrum. However, only G. dominans had a positive growth feeding on M. rubrum. The growth and ingestion rates of G. dominans on M. rubrum increased rapidly with increasing mean prey concentration < $321ngCmL^{-1}$, but became saturated or slowly at higher concentrations. The maximum growth rate of G. dominans on M. rubrum was $0.48d^{-1}$, while the maximum ingestion rate was 0.55 ng C $predator^{-1}d^{-1}$. The grazing coefficients by G. dominans on populations of M. rubrum were up to $0.236h^{-1}$. Thus, G. dominans may sometimes have a considerable grazing impact on populations of M. rubrum.

태안해안국립공원 인근의 허베이스피리트 사고를 포함한 유류유출 해역의 식물플랑크톤 생태계 1. 하계 식물플랑크톤 군집의 연변동 (Phytoplankton Ecosystems at Oil Spill Coasts Including the Hebei Spirit Oil Spill Site Near Taeanhaean National Park, Korea 1. Interannual Variability of Phytoplankton Community in Summer)

  • 이원호;김형섭;조수근
    • Ocean and Polar Research
    • /
    • 제41권1호
    • /
    • pp.1-10
    • /
    • 2019
  • Right after the 2007 Hebei Spirit Oil Spill phytoplankton ecosystems were investigated for 11 years based on the seasonal monitoring of the composition and abundance of phytoplankton species. Comparable time-series data from the 1989 Exxon Valdez or the 2010 Deepwater Horizon Oil Spill sites were not available. It was suggested that the ecological healthiness of phytoplankton ecosystems at EVOS sites had recovered after 10 years following the oil spill based on chlorophyll concentrations even though these concentrations only represented phytoplankton communities in most cases. Chlorophyll concentrations can only reflect limited aspects of highly complex phytoplankton ecosystems. During the last 11 years following the 2017 HSOS, extreme variabilities were met in the seasonally averaged ratios of diatoms to phototrophic flagellates including dinoflagellates based on the microscopic cell countings. Summer phytoplankton communities exhibited some cyclic interannual changes in dominant groups every 2-4 years. During the early years (2008-2010) cryptophytes or raphidophytes (Chattonella spp.) dominated alternately each year, which was repeated again in 2014, 2015 and 2017. Two thecate dinoflagellates, Tripos fusus and Tripos furca, together accounted for 52.5% and 50.0% of all organisms in the summers of 2011 and 2012, respectively, which was repeated again in 2018. Summer occurrence and dominance by the phototrophic flagellates including HABs (Harmful Algal Blooms) species as well as their interannual variabilities in the oil spill sites could be utilized as markers for the stable and long-term management of healthy ecosystems. For this type of scientific ecosystem management monitoring of chlorophyll concentrations may sometimes be insufficient to gain a proper and comprehensive understanding of phytoplankton communities located in areas where oil spills have occurred and harmed the ecosystem.

전남 고흥 해역의 유해성 적조의 발생연구 2. 1997년도 식물플랑크톤의 시공간적 변화 (The Outbreak of Red Tides in the Coastal Waters off Kohung, Chonnam, Korea 2. The Temporal and Spatial Variations in the Phytoplanktonic Community in 1997)

  • 정해진;박종규;최현용;양재삼;심재형;신윤근;이원호;김형섭;조경제
    • 한국해양학회지:바다
    • /
    • 제5권1호
    • /
    • pp.27-36
    • /
    • 2000
  • 전남 고흥군 나로도 해역은 1995년 이후 해마다 8월부터 10월까지 남해안에서 대규모로 발생되는 유해성 적조 가 가장 먼저 발견되는 곳이다. 이 해역에서의 유해성 적조의 발생에 대한 연구를 하기 위하여, 1997년 6월 20일부터 9월22일까지 모두 5차례에 걸쳐 최대 6개 정점, 5개 깊이에서 시료를 채집한 뒤 적조원인생물과 연관 식물플랑크톤의 분포를 조사하여 본 연구와 동시에 조사, 분석된 수온, 염분, 영양염류 분포 등 환경요인들과의 연관성을 연구하였다. 1997년의 경우 이 해역에서 8월 24일에 적조띠가 처음 발견되었는데 가장 우점했던 유해성적조원인생물은 이제까치 알려진 것과는 다르게 Gyrodinium impudicum이었으며 Cochlodinium polykrikoides의 밀도는 G. impudicum의 밀도보다 훨씬 낮았다. 적조발생직전인 8월 21일에는 G. impudicum의 최대밀도가 90cells $ml^{-1}$로 낮았고 주로 내측(nearshore)에서 밀도가 외측보다 높았으나, 발생직후인 8월 27일에는 G. impudicum의 최대밀도가 30,000 cells $ml^{-1}$까지 이르렀고, 적조띠는 주로 외해(offshore)에 위치한 정점들에서 발견되었다. 이러한 갑작스러운 밀도의 증가는 G. impudicum의 최대성장률을 고려해 볼 때 G. impudicum의 적조띠가 다른 곳에서 이미 형성되었다가 본 조사해역으로 이동해왔거나, 저밀도로 산재해 있던 G. impudicum의 개체들이 물리적인 힘에 의하여 급속히 모여 적조띠를 이루었을 가능성을 제시할 수 있다. 8월 21일과 8월 27일 사이에 내측 정점에서는 G. impudicum의 밀도는 일정한 반면에, Skeleltonema costatum, Chaetoceros pseudocurvisetus, Pseudonitzschia pungens 등 규조류가 대번식하였다. 이는 강우 뒤 육수의 유입이 내측 환경에 상당한 영향을 주었고 이러한 유입수의 고농도의 영양염류가 규조류의 급속한 성장을 야기시켰으며, 규조류의 급증은 오히려 상대적으로 성장률이 훨씬 낮은 G. impudicum 등 와편모류의 성장을 억제했을 가능성이 높다. 그러므로 이 해역에서의 적조발생은 advection, physical aggregation과 같은 물리적인 힘과 적조원인생물과 연관 식물플랑크톤간의 경쟁의 영향을 받았을 것으로 생각된다.

  • PDF