DOI QR코드

DOI QR Code

Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum

  • Lee, Kyung Ha (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Yoon, Eun Young (Advanced Institutes of Convergence Technology) ;
  • Jang, Se Hyeon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kim, Hyung Seop (Department of Marine Biotechnology, College of Ocean Sciences, Kunsan National University) ;
  • Yih, Wonho (Department of Oceanography, College of Ocean Sciences, Kunsan National University)
  • Received : 2014.05.12
  • Accepted : 2014.06.02
  • Published : 2014.06.15

Abstract

Mesodinium rubrum is a cosmopolitan ciliate that often causes red tides. Predation by heterotrophic protists is a critical factor that affects the population dynamics of red tide species. However, there have been few studies on protistan predators feeding on M. rubrum. To investigate heterotrophic protists grazing on M. rubrum, we tested whether the heterotrophic dinoflagellates Gyrodiniellum shiwhaense, Gyrodinium dominans, Gyrodinium spirale, Luciella masanensis, Oblea rotunda, Oxyrrhis marina, Pfiesteria piscicida, Polykrikos kofoidii, Protoperidinium bipes, and Stoeckeria algicida, and the ciliate Strombidium sp. preyed on M. rubrum. G. dominans, L. masanensis, O. rotunda, P. kofoidii, and Strombidium sp. preyed on M. rubrum. However, only G. dominans had a positive growth feeding on M. rubrum. The growth and ingestion rates of G. dominans on M. rubrum increased rapidly with increasing mean prey concentration < $321ngCmL^{-1}$, but became saturated or slowly at higher concentrations. The maximum growth rate of G. dominans on M. rubrum was $0.48d^{-1}$, while the maximum ingestion rate was 0.55 ng C $predator^{-1}d^{-1}$. The grazing coefficients by G. dominans on populations of M. rubrum were up to $0.236h^{-1}$. Thus, G. dominans may sometimes have a considerable grazing impact on populations of M. rubrum.

Keywords

References

  1. Barber, R. T. & Smith, W. O. Jr. 1981. The role of circulation, sinking and vertical migration in physical sorting of phytoplankton in the upwelling center at $15^{\circ}S$. In Richards, F. A. (Ed.) Coastal Upwelling. Coastal and Estuarine Sciences 1. American Geophysical Union, Washington, DC, pp. 366-371.
  2. Berge, T., Hansen, P. J. & Moestrup, O. 2008. Prey size spectrum and bioenergetics of the mixotrophic dinoflagellate Karlodinium armiger. Aquat. Microb. Ecol. 50:289-299. https://doi.org/10.3354/ame01166
  3. Blossom, H. E., Daugbjerg, N. & Hansen, P. J. 2012. Toxic mucus traps: a novel mechanism that mediates prey uptake in the mixotrophic dinoflagellate Alexandrium pseudogonyaulax. Harmful Algae 17:40-53. https://doi.org/10.1016/j.hal.2012.02.010
  4. Bouley, P. & Kimmerer, W. J. 2006. Ecology of a highly abundant, introduced cyclopoid copepod in a temperate estuary. Mar. Ecol. Prog. Ser. 324:219-228. https://doi.org/10.3354/meps324219
  5. Buskey, E. J., Coulter, C. & Strom, S. 1993. Locomotory patterns of microzooplankton: potential effects on food selectivity of larval fish. Bull. Mar. Sci. 53:29-43.
  6. Calbet, A., Isari, S., Martinez, R. A., Saiz, E., Garrido, S., Peters, J., Borrat, R. M. & Alcaraz, M. 2013. Adaptations to feast and famine in different strains of the marine heterotrophic dinoflagellates Gyrodinium dominans and Oxyrrhis marina. Mar. Ecol. Prog. Ser. 483:67-84. https://doi.org/10.3354/meps10291
  7. Crawford, D. W. 1989. Mesodinium rubrum: the phytoplankter that wasn't. Mar. Ecol. Prog. Ser. 58:161-174. https://doi.org/10.3354/meps058161
  8. Crawford, D. W. 1992. Metabolic cost of motility in planktonic protists: theoretical considerations on size scaling and swimming speed. Microb. Ecol. 24:1-10.
  9. Crawford, D. W. & Lindholm, T. 1997. Some observations on vertical distribution and migration of the phototrophic ciliate Mesodinium rubrum (Myrionecta rubra) in a stratified brackish inlet. Aquat. Microb. Ecol. 13:267-274. https://doi.org/10.3354/ame013267
  10. Fenchel, T. & Hansen, P. J. 2006. Motile behaviour of the bloom-forming ciliate Mesodinium rubrum. Mar. Biol. Res. 2:33-40. https://doi.org/10.1080/17451000600571044
  11. Frost, B. W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17:805-815. https://doi.org/10.4319/lo.1972.17.6.0805
  12. Garzio, L. M. & Steinberg, D. K. 2013. Microzooplankton community composition along the Western Antarctic Peninsula. Deep Sea Res. Part I. Oceanogr. Res. Pap. 77:36-49. https://doi.org/10.1016/j.dsr.2013.03.001
  13. Gibson, J. A. E., Swadling, K. M., Pitman, T. M. & Burton, H. R. 1997. Overwintering populations of Mesodinium rubrum (Ciliophora: Haptorida) in lakes of the Vestfold Hills, East Antarctica. Polar Biol. 17:175-179. https://doi.org/10.1007/s003000050119
  14. Gustafson, D. E. Jr, Stoecker, D. K., Johnson, M. D., Van Heukelem, W. F. & Sneider, K. 2000. Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum. Nature 405:1049-1052. https://doi.org/10.1038/35016570
  15. Hansen, P. J., Bjornsen, P. K. & Hansen, B. W. 1997. Zooplankton grazing and growth: scaling within the 2-2,000-$\mu{m}$body size range. Limnol. Oceanogr. 42:687-704. https://doi.org/10.4319/lo.1997.42.4.0687
  16. Hansen, P. J. & Fenchel, T. 2006. The bloom-forming ciliate Mesodinium rubrum harbours a single permanent endosymbiont. Mar. Biol. Res. 2:169-177. https://doi.org/10.1080/17451000600719577
  17. Hansen, P. J., Nielsen, L. T., Johnson, M., Berge, T. & Flynn, K. J. 2013. Acquired phototrophy in Mesodinium and Dinophysis: a review of cellular organization, prey selectivity, nutrient uptake and bioenergetics. Harmful Algae 28:126-139. https://doi.org/10.1016/j.hal.2013.06.004
  18. Hansen, P. J., Nielsen, T. G. & Kaas, H. 1995. Distribution and growth of protists and mesozooplankton during a bloom of Chrysochromulina spp. (Prymnesiophyceae, Prymnesiales). Phycologia 34:409-416. https://doi.org/10.2216/i0031-8884-34-5-409.1
  19. Heil, C. A., Glibert, P. M. & Fan, C. 2005. Prorocentrum minimum (Pavillard) Schiller: a review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4:449-470. https://doi.org/10.1016/j.hal.2004.08.003
  20. Heinbokel, J. F. 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47:177-189. https://doi.org/10.1007/BF00395638
  21. Holling, C. S. 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91:385-398. https://doi.org/10.4039/Ent91385-7
  22. Jeong, H. J., Ha, J. H., Park, J. Y., Kim, J. H., Kang, N. S., Kim, S., Kim, J. S., Yoo, Y. D. & Yih, W. 2006. Distribution of the heterotrophic dinoflagellate Pfieteria piscicida in Korean waters and its consumption of mixotrophic dinoflagellates, raphidophytes, and fish blood cells. Aquat. Microb. Ecol. 44:263-278. https://doi.org/10.3354/ame044263
  23. Jeong, H. J., Ha, J. H., Yoo, Y. D., Park, J. Y., Kim, J. H., Kang, N. S., Kim, T. H., Kim, H. S. & Yih, W. 2007. Feeding by the Pfiesteria-like heterotrophic dinoflagellate Luciella masanensis. J. Eukaryot. Microbiol. 54:231-241. https://doi.org/10.1111/j.1550-7408.2007.00259.x
  24. Jeong, H. J., Kim, J. S., Kim, J. H., Kim, S. T., Seong, K. A., Kim, T. H., Song, J. Y. & Kim, S. K. 2005. Feeding and grazing impact by the newly described heterotrophic dinoflagellate Stoeckeria algicida on the harmful alga Heterosigma akashiwo. Mar. Ecol. Prog. Ser. 295:69-78. https://doi.org/10.3354/meps295069
  25. Jeong, H. J., Kim, S. K., Kim, J. S., Kim, S. T., Yoo, Y. D. & Yoon, J. Y. 2001. Growth and grazing rates of the heterotrophic dinoflagellate Polykrikos kofoidii on red-tide and toxic dinoflagellates. J. Eukaryot. Microbiol. 48:298-308. https://doi.org/10.1111/j.1550-7408.2001.tb00318.x
  26. Jeong, H. J., Kim, T. H., Yoo, Y. D., Yoon, E. Y., Kim, J. S., Seong, K. A., Kim, K. Y. & Park, J. Y. 2011a. Grazing impact of heterotrophic dinoflagellates and ciliates on common red-tide euglenophyte Eutreptiella gymnastica in Masan Bay, Korea. Harmful Algae 10:576-588. https://doi.org/10.1016/j.hal.2011.04.008
  27. Jeong, H. J., Lee, K. H., Yoo, Y. D., Kang, N. S. & Lee, K. 2011b. Feeding by the newly described, nematocyst-bearing heterotrophic dinoflagellate Gyrodiniellum shiwhaense. J. Eukaryot. Microbiol. 58:511-524. https://doi.org/10.1111/j.1550-7408.2011.00580.x
  28. Jeong, H. J., Lim, A. S., Yoo, Y. D., Lee, M. J., Lee, K. H., Jang, T. Y. & Lee, K. 2014. Feeding by heterotrophic dinoflagellates and ciliates on the free-living dinoflagellate Symbiodinium sp. (Clade E). J. Eukaryot. Microbiol. 61:27-41. https://doi.org/10.1111/jeu.12083
  29. Jeong, H. J., Seong, K. A., Yoo, Y. D., Kim, T. H., Kang, N. S., Kim, S., Park, J. Y., Kim, J. S., Kim, G. H. & Song, J. Y. 2008. Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria. J. Eukaryot. Microbiol. 55:271-288. https://doi.org/10.1111/j.1550-7408.2008.00336.x
  30. Jeong, H. J., Yoo, Y. D., Kang, N. S., Rho, J. R., Seong, K. A., Park, J. W., Nam, G. S. & Yih, W. 2010. Feeding by the red-tide dinoflagellate Gymnodinium aureolum from the western Korean waters. Aquat. Microb. Ecol. 59:239-255. https://doi.org/10.3354/ame01394
  31. Jeong, H. J., Yoo, Y. D., Kim, S. T. & Kang, N. S. 2004. Feeding by the heterotrophic dinoflagellate Protoperidinium bipes on the diatom Skeletonema costatum. Aquat. Microb. Ecol. 36:171-179. https://doi.org/10.3354/ame036171
  32. Jeong, H. J., Yoo, Y. D., Lim, A. S., Kim, T. -W., Lee, K. & Kang, C. K. 2013. Raphidophyte red tides in Korean waters. Harmful Algae 30(Suppl. 1):S41-S52. https://doi.org/10.1016/j.hal.2013.10.005
  33. Johnson, M. D., Stoecker, D. K. & Marshall, H. G. 2013. Seasonal dynamics of Mesodinium rubrum in Chesapeake Bay. J. Plankton Res. 35:877-893. https://doi.org/10.1093/plankt/fbt028
  34. Johnson, M. D., Tengs, T., Oldach, D. W., Delwiche, C. F. & Stoecker, D. K. 2004. Highly divergent SSU rRNA genes found in the marine ciliates Myrionecta rubra and Mesodinium pulex. Protist 155:347-359. https://doi.org/10.1078/1434461041844222
  35. Kang, N. S., Lee, K. H., Jeong, H. J., Yoo, Y. D., Seong, K. A., Potvin, E., Hwang, Y. J. & Yoon, E. Y. 2013. Red tides in Shiwha Bay, western Korea: a huge dike and tidal power plant established in a semi-enclosed embayment system. Harmful Algae 30(Suppl. 1):S114-S130. https://doi.org/10.1016/j.hal.2013.10.011
  36. Kim, J. S. & Jeong, H. J. 2004. Feeding by the heterotrophic dinoflagellates Gyrodinium dominans and G. spirale on the red-tide dinoflagellate Prorocentrum minimum. Mar. Ecol. Prog. Ser. 280:85-94. https://doi.org/10.3354/meps280085
  37. Kim, S., Kang, Y. G., Kim, H. S., Yih, W., Coats, D. W. & Park, M. G. 2008. Growth and grazing responses of the mixotrophic dinoflagellate Dinophysis acuminata as functions of light intensity and prey concentration. Aquat. Microb. Ecol. 51:301-310. https://doi.org/10.3354/ame01203
  38. Lindholm, T. 1985. Mesodinium rubrum: a unique photosynthetic ciliate. Adv. Aquat. Microbiol. 3:1-48.
  39. Menden-Deuer, S. & Lessard, E. J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45:569-579. https://doi.org/10.4319/lo.2000.45.3.0569
  40. Myung, G., Kim, H. S., Park, J. S., Park, M. G. & Yih, W. 2011. Population growth and plastid type of Myrionecta rubra depend on the kinds of available cryptomonad prey. Harmful Algae 10:536-541. https://doi.org/10.1016/j.hal.2011.04.005
  41. Nakamura, Y., Suzuki, S. -Y. & Hiromi, J. 1995. Growth and grazing of a naked heterotrophic dinoflagellate, Gyrodinium dominans. Aquat. Microb. Ecol. 9:157-164. https://doi.org/10.3354/ame009157
  42. Nakamura, Y., Yamazaki, Y. & Hiromi, J. 1992. Growth and grazing of a heterotrophic dinoflagellate, Gyrodinium dominans, feeding on a red tide flagellate, Chattonella antiqua. Mar. Ecol. Prog. Ser. 82:275-279. https://doi.org/10.3354/meps082275
  43. Park, J., Jeong, H. J., Yoo, Y. D. & Yoon, E. Y. 2013a. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae 30(Suppl. 1):S28-S40. https://doi.org/10.1016/j.hal.2013.10.004
  44. Park, M. G., Kim, M. & Kang, M. 2013b. A dinoflagellate Amylax triacantha with plastids of the cryptophyte origin: phylogeny, feeding mechanism, and growth and grazing responses. J. Eukaryot. Microbiol. 60:363-376. https://doi.org/10.1111/jeu.12041
  45. Park, M. G., Kim, S., Kim, H. S., Myung, G., Kang, Y. G. & Yih, W. 2006. First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat. Microb. Ecol. 45:101-106. https://doi.org/10.3354/ame045101
  46. Park, M. G., Lee, H., Kim, K. Y. & Kim, S. 2011. Feeding behavior, spatial distribution and phylogenetic affinities of the heterotrophic dinoflagellate Oxyphysis oxytoxoides. Aquat. Microb. Ecol. 62:279-287. https://doi.org/10.3354/ame01474
  47. Seuthe, L., Iversen, K. R. & Narcy, F. 2011. Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biol. 34:751-766. https://doi.org/10.1007/s00300-010-0930-9
  48. Sherr, E. B. & Sherr, B. F. 2002. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81:293-308. https://doi.org/10.1023/A:1020591307260
  49. Smayda, T. J. 2002. Turbulence, watermass stratification and harmful algal blooms: an alternative view and frontal zones as "pelagic seed banks". Harmful Algae 1:95-112. https://doi.org/10.1016/S1568-9883(02)00010-0
  50. Stoecker, D. K. & Capuzzo, J. M. 1990. Predation on protozoa: its importance to zooplankton. J. Plankton Res. 12:891-908. https://doi.org/10.1093/plankt/12.5.891
  51. Strom, S. L. & Buskey, E. J. 1993. Feeding, growth, and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda. Limnol. Oceanogr. 38:965-977. https://doi.org/10.4319/lo.1993.38.5.0965
  52. Williams, J. A. 1996. Blooms of Mesodinium rubrum in Southampton Water: do they shape mesozooplankton distribution? J. Plankton Res. 18:1685-1697. https://doi.org/10.1093/plankt/18.9.1685
  53. Yih, W., Kim, H. S., Jeong, H. J., Myung, G. & Kim, Y. G. 2004. Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rubrum. Aquat. Microb. Ecol. 36:165-170. https://doi.org/10.3354/ame036165
  54. Yih, W., Kim, H. S., Myung, G., Park, J. W., Yoo, Y. D. & Jeong, H. J. 2013. The red-tide ciliate Mesodinium rubrum in Korean coastal waters. Harmful Algae 30(Suppl. 1):S53-S61. https://doi.org/10.1016/j.hal.2013.10.006
  55. Yoo, Y. D., Jeong, H. J., Kang, N. S., Kim, J. S., Kim, T. H. & Yoon, E. Y. 2010. Ecology of Gymnodinium aureolum. II. Predation by common heterotrophic dinoflagellates and a ciliate. Aquat. Microb. Ecol. 59:257-272. https://doi.org/10.3354/ame01401
  56. Yoo, Y. D., Jeong, H. J., Kim, J. S., Kim, T. H., Kim, J. H., Seong, K. A., Lee, S. H., Kang, N. S., Park, J. W., Park, J., Yoon, E. Y. & Yih, W. 2013a. Red tides in Masan Bay, Korea in 2004-2005: II. Daily variations in the abundance of heterotrophic protists and their grazing impact on red-tide organisms. Harmful Algae 30(Suppl. 1):S89-S101. https://doi.org/10.1016/j.hal.2013.10.009
  57. Yoo, Y. D., Yoon, E. Y., Lee, K. H., Kang, N. S. & Jeong, H. J. 2013b. Growth and ingestion rates of heterotrophic dinoflagellates and a ciliate on the mixotrophic dinoflagellate Biecheleria cincta. Algae 28:343-354. https://doi.org/10.4490/algae.2013.28.4.343

Cited by

  1. Use of Highly Specific Molecular Markers Reveals Positive Correlation between Abundances of Mesodinium cf. major and Its Preferred Prey, Teleaulax amphioxeia, During Red Water Blooms in the Columbia River Estuary 2017, https://doi.org/10.1111/jeu.12407
  2. A hierarchy of conceptual models of red-tide generation: Nutrition, behavior, and biological interactions vol.47, 2015, https://doi.org/10.1016/j.hal.2015.06.004
  3. Fatty acid composition and docosahexaenoic acid (DHA) content of the heterotrophic dinoflagellate Oxyrrhis marina fed on dried yeast: compared with algal prey vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.3.5
  4. Feeding currents facilitate a mixotrophic way of life vol.9, pp.10, 2015, https://doi.org/10.1038/ismej.2015.27
  5. Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method vol.31, pp.4, 2016, https://doi.org/10.4490/algae.2016.31.12.7
  6. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors vol.32, pp.2, 2017, https://doi.org/10.4490/algae.2017.32.5.30
  7. Mixotrophy in the nematocyst–taeniocyst complex-bearing phototrophic dinoflagellate Polykrikos hartmannii vol.49, 2015, https://doi.org/10.1016/j.hal.2015.08.006
  8. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): Predator of diverse toxic and harmful dinoflagellates vol.60, 2016, https://doi.org/10.1016/j.hal.2016.10.008
  9. Differential interactions between the nematocyst-bearing mixotrophic dinoflagellate Paragymnodinium shiwhaense and common heterotrophic protists and copepods: Killer or prey vol.62, 2017, https://doi.org/10.1016/j.hal.2016.12.005
  10. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus vol.59, 2016, https://doi.org/10.1016/j.hal.2016.09.008
  11. Functional ecology of aquatic phagotrophic protists – Concepts, limitations, and perspectives vol.55, 2016, https://doi.org/10.1016/j.ejop.2016.03.003
  12. Ingestion rate and grazing impact by the mixotrophic ciliate Mesodinium rubrum on natural populations of marine heterotrophic bacteria in the coastal waters of Korea vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.3.8
  13. Ingestion of the unicellular cyanobacterium Synechococcus by the mixotrophic red tide ciliate Mesodinium rubrum vol.30, pp.4, 2015, https://doi.org/10.4490/algae.2015.30.4.281
  14. Interactions between the mixotrophic dinoflagellate Takayama helix and common heterotrophic protists vol.68, 2017, https://doi.org/10.1016/j.hal.2017.08.006
  15. Interactions between the voracious heterotrophic nanoflagellate Katablepharis japonica and common heterotrophic protists vol.32, pp.4, 2017, https://doi.org/10.4490/algae.2017.32.11.27
  16. Marine aloricate ciliate red tides in a temperate Irish sea lough vol.47, pp.3, 2014, https://doi.org/10.1007/s12526-016-0520-3
  17. The Importance of Mesodinium rubrum at Post-Spring Bloom Nutrient and Phytoplankton Dynamics in the Vertically Stratified Baltic Sea vol.4, pp.None, 2014, https://doi.org/10.3389/fmars.2017.00407
  18. Differential feeding by common heterotrophic protists on four Scrippsiella species of similar size vol.55, pp.4, 2014, https://doi.org/10.1111/jpy.12864
  19. Phytoplankton Blooms, Red Tides and Mucilaginous Aggregates in the Urban Thessaloniki Bay, Eastern Mediterranean vol.11, pp.8, 2014, https://doi.org/10.3390/d11080136
  20. Feeding by common heterotrophic protist predators on seven Prorocentrum species vol.35, pp.1, 2014, https://doi.org/10.4490/algae.2020.35.2.28
  21. Feeding by the newly described heterotrophic dinoflagellate Gyrodinium jinhaense: comparison with G. dominans and G. moestrupii vol.167, pp.10, 2014, https://doi.org/10.1007/s00227-020-03769-9
  22. Interactions Between the Kleptoplastidic Dinoflagellate Shimiella gracilenta and Several Common Heterotrophic Protists vol.8, pp.None, 2014, https://doi.org/10.3389/fmars.2021.738547
  23. Comparison of the spatial-temporal distributions of the heterotrophic dinoflagellates Gyrodinium dominans, G. jinhaense, and G. moestrupii in Korean coastal waters vol.36, pp.1, 2014, https://doi.org/10.4490/algae.2021.36.3.4