DOI QR코드

DOI QR Code

Polyphenol-rich fraction from Ecklonia cava (a brown alga) processing by-product reduces LPS-induced inflammation in vitro and in vivo in a zebrafish model

  • Kim, Seo-Young (Department of Marine Life Science, Jeju National University) ;
  • Kim, Eun-A (Department of Marine Life Science, Jeju National University) ;
  • Kang, Min-Cheol (Department of Marine Life Science, Jeju National University) ;
  • Lee, Ji-Hyeok (Department of Marine Life Science, Jeju National University) ;
  • Yang, Hye-Won (Department of Marine Life Science, Jeju National University) ;
  • Lee, Jung-Suck (Industry-Academic Cooperation Foundation, Jeju National University) ;
  • Lim, Tae Il (Taerim Trading Co., Ltd.) ;
  • Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
  • Received : 2014.04.25
  • Accepted : 2014.06.03
  • Published : 2014.06.15

Abstract

Ecklonia cava is a common edible brown algae that is plentiful in Jeju Island of Republic of Korea. Polyphenols from E. cava have strong anti-inflammatory activity. However, a large number of the by-products from E. cava processing are discarded. In the present study, to utilize these by-products, we assessed the anti-inflammatory activity of the polyphenol-rich fraction (PRF) from E. cava processing by-product (EPB) in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells. Four compounds, namely eckol, eckstolonol, dieckol, and phlorofucofuroeckol-A, were isolated and identified from PRF. We found that PRF suppressed the production of nitric oxide (NO), inducible nitric oxide synthase, and cyclooxygenase-2 in the LPS-induced cells. Furthermore, the protective effect of PRF was investigated in vivo in LPS-stimulated inflammation zebrafish model. PRF had a protective effect against LPS-stimulated toxicity in zebrafish embryos. In addition, PRF inhibited LPS-stimulated reactive oxygen species and NO generation. According to the results, PRF isolated from EPB could be used as a beneficial anti-inflammatory agent, instead of discard.

Keywords

References

  1. Ahn, K. S., Noh, E. J., Zhao, H. L., Jung, S. H., Kang, S. S. & Kim, Y. S. 2005. Inhibition of inducible nitric oxide synthase and cyclooxygenase II by Platycodon grandiflorum saponins via suppression of nuclear factor-$\kappa{B}$ activation in RAW 264.7 cells. Life Sci. 76:2315-2328. https://doi.org/10.1016/j.lfs.2004.10.042
  2. Bolck, B., Ibrahim, M., Steinritz, D., Morguet, C., Duhr, S., Suhr, F., Lu-Hesselmann, J. & Bloch, W. 2014. Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo[a]pyrene in human keratinocytes. Toxicol. In Vitro 28:875-884. https://doi.org/10.1016/j.tiv.2014.03.010
  3. Choi, J. -I., Yun, I. -H., Jung, Y., Lee, E. -H., Nam, T. -J. & Kim, Y. -M. 2012. Effects of $\gamma$-aminobutyric acid (GABA)-enriched sea tangle Laminaria japonica extract on lipopolysaccharide-induced inflammation in mouse macrophage (RAW 264.7) cells. Fish. Aquat. Sci. 15:293-297.
  4. Conforti, F., Sosa, S., Marrelli, M., Menichini, F., Statti, G. A., Uzunov, D., Tubaro, A., Menichini, F. & Loggia, R. D. 2008. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol. 116:144-151. https://doi.org/10.1016/j.jep.2007.11.015
  5. Dewanjee, S., Dua, T. K. & Sahu, R. 2013. Potential anti-inflammatory effect of Leea macrophylla Roxb. leaves: a wild edible plant. Food Chem. Toxicol. 59:514-520. https://doi.org/10.1016/j.fct.2013.06.038
  6. Erbert, C., Lopes, A. A., Yokoya, N. S., Furtado, N. A. J. C., Conti, R., Pupo, M. T., Lopes, J. L. C. & Debonsi, H. M. 2012. Antibacterial compound from the endophytic fungus Phomopsis longicolla isolated from the tropical red seaweed Bostrychia radicans. Bot. Mar. 55:435-440.
  7. Geronikaki, A. A. & Gavalas, A. M. 2006. Antioxidants and inflammatory disease: synthetic and natural antioxidants with anti-inflammatory activity. Comb. Chem. High Throghput Screen. 9:425-442. https://doi.org/10.2174/138620706777698481
  8. Handa, O., Kokura, S., Adachi, S., Takagi, T., Naito, Y., Tanigawa, T., Yoshida, N. & Yoshikawa, T. 2006. Methylparaben potentiates UV-induced damage of skin keratinocytes. Toxicology 227:62-72. https://doi.org/10.1016/j.tox.2006.07.018
  9. Heo, S. -J., Lee, K. -W., Song, C. B. & Jeon, Y. -J. 2003. Antioxidant activity of enzymatic extracts from brown seaweeds. Algae 18:71-81. https://doi.org/10.4490/ALGAE.2003.18.1.071
  10. Itoh, Y., Ma, F. H., Hoshi, H., Oka, M., Noda, K., Ukai, Y., Kojima, H., Nagano, T. & Toda, N. 2000. Determination and bioimaging method for nitiric oxide in biological specimens by diaminofluorescein fluorometry. Anal. Biochem. 287:203-209. https://doi.org/10.1006/abio.2000.4859
  11. Kang, C., Jin, Y. B., Lee, H., Cha, M., Sohn, E. -T., Moon, J., Park, C., Chun, S., Jung, E. -S., Hong, J. -S., Kim, S. B., Kim, J. -S. & Kim, E. 2010. Brown alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways. Food Chem. Toxicol. 48:509-516. https://doi.org/10.1016/j.fct.2009.11.004
  12. Kang, J. -Y., Choi, J. -S., Park, N. G., Ahn, D. -H. & Hong, Y. -K. 2012a. In Vivo antipyretic, analgesic, and anti-inflammatory activities of the brown alga Ecklonia cava extracts in mice. Fish. Aquat. Sci. 15:73-76.
  13. Kang, M. -C., Kim, K. -N., Kang, S. -M., Yang, X., Kim, E. -A., Song, C. B., Nah, J. -W., Jang, M. -K., Lee, J. -S., Jung, W. -K. & Jeon, Y. -J. 2013. Protective effect of dieckol isolated from Ecklonia cava against ethanol caused damage in vitro and in zebrafish model. Environ. Toxicol. Pharmacol. 36:1217-1226. https://doi.org/10.1016/j.etap.2013.09.018
  14. Kang, M. -C., Kim, K. -N., Wijesinghe, W. A. J. P., Yang, X., Ahn, G. & Jeon, Y. -J. 2014a. Protective effect of polyphenol extracted from Ecklonia cava against ethanol induced oxidative damage in vitro and in zebrafish model. J. Funct. Foods 6:339-347. https://doi.org/10.1016/j.jff.2013.10.025
  15. Kang, M. -C., Kim, S. Y., Kim, Y. T., Kim, E. -A., Lee, S. -H., Ko, S. -C., Wijesinghe, W. A. J. P., Samarakoon, K. W., Kim, Y. -S., Cho, J. H., Jang, H. -S. & Jeon, Y. -J. 2014b. In vitro and in vivo antioxidant activities of polysaccharide purified from aloe vera (Aloe barbadensis) gel. Carbohydr. Polym. 99:365-371. https://doi.org/10.1016/j.carbpol.2013.07.091
  16. Kang, S. -M., Heo, S. -J., Kim, K. -N., Lee, S. -H. & Jeon, Y. -J. 2012b. Isolation and identification of new compound, 2,7"-phloroglucinol-6,6'-bieckol from brown algae, Ecklonia cava and its antioxidant effect. J. Funct. Foods 4:158-166. https://doi.org/10.1016/j.jff.2011.10.001
  17. Kang, S. -M., Kim, K. -N., Lee, S. -H., Ahn, G., Cha, S. -H., Kim, A. -D., Yang, X. -D., Kang, M. -C. & Jeon, Y. -J. 2011. Anti-inflammatory activity of polysaccharide purified from AMG-assistant extract of Ecklonia cava in LPSstimulated RAW 264.7 macrophages. Carbohydr. Polym. 85:80-85. https://doi.org/10.1016/j.carbpol.2011.01.052
  18. Kim, E. -A., Lee, S. -H., Ko, C. -I., Cha, S. -H., Kang, M. -C., Kang, S. -M., Ko, S. -C., Lee, W. -W., Ko, J. -Y., Lee, J. -H., Kang, N., Oh, J. -Y., Ahn, G., Jee, Y. H. & Jeon, Y. -J. 2014. Protective effect of fucoidan against AAPH-induced oxidative stress in zebrafish model. Carbohydr. Polym. 102:185-191. https://doi.org/10.1016/j.carbpol.2013.11.022
  19. Kim, K. -N., Ko, Y. -J., Kang, M. -C., Yang, H. -M., Roh, S. W., Oda, T., Jeon, Y. -J., Jung, W. -K., Heo, S. -J., Yoon, W. -J. & Kim, D. 2013. Anti-inflammatory effects of trans-1,3-diphenyl-2,3-epoxypropane-1-one mediated by suppression of inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 53:371-375. https://doi.org/10.1016/j.fct.2012.12.021
  20. Kim, W. -J., Kim, S. -M., Kim, H. G., Oh, H. -R., Lee, K. -B., Lee, Y. -K. & Park, Y. -I. 2007. Purification and anticoagulant activity of a fucoidan from Korean Undaria pinnatifida sporophyll. Algae 22:247-252. https://doi.org/10.4490/ALGAE.2007.22.3.247
  21. Ko, J. -Y., Kim, E. -A., Lee, J. -H., Kang, M. -C., Lee, J. -S., Kim, J. -S., Jung, W. -K. & Jeon, Y. -J. 2014. Protective effect of aquacultured flounder fish-derived peptide against oxidative stress in zebrafish. Fish Shellfish Immunol. 36:320-323. https://doi.org/10.1016/j.fsi.2013.11.018
  22. Ko, S. -C., Lee, S. -H., Ahn, G., Kim, K. -N., Cha, S. -H., Kim, S. -K., Jeon, B. -T., Park, P. -J., Lee, K. -W. & Jeon, Y. -J. 2012. Effect of enzyme-assisted extract of Sargassum coreanum on induction of apoptosis in HL-60 tumor cells. J. Appl. Phycol. 24:675-684. https://doi.org/10.1007/s10811-011-9685-0
  23. Kumar, K. S., Vijayan, V., Bhaskar, S., Krishnan, K., Shalini, V. & Helen, A. 2012. Anti-inflammatory potential of an ethyl acetate fraction isolated from Justicia gendarussa roots through inhibition of iNOS and COX-2 expression via NF-$\kappa{B}$ pathway. Cell. Immunol. 272:283-289. https://doi.org/10.1016/j.cellimm.2011.09.014
  24. Kwon, H. -J., Ryu, Y. B., Kim, Y. -M., Song, N., Kim, C. Y., Rho, M. -C., Jeong, J. -H., Cho, K. -O., Lee, W. S. & Park, S. -J. 2013. In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorg. Med. Chem. 21:4706-4713. https://doi.org/10.1016/j.bmc.2013.04.085
  25. Lee, J. -H., Ko, J. -Y., Oh, J. -Y., Kim, C. -Y., Lee, H. -J., Kim, J. & Jeon, Y. -J. 2014. Preparative isolation and purification of phlorotannins from Ecklonia cava using centrifugal partition chromatography by one-step. Food Chem. 158:433-437. https://doi.org/10.1016/j.foodchem.2014.02.112
  26. Lee, S. -H., Kang, M. -C., Moon, S. -H., Jeon, B. -T. & Jeon, Y. -J. 2013a. Potential use of ultrasound in antioxidant extraction from Ecklonia cava. Algae 28:371-378. https://doi.org/10.4490/algae.2013.28.4.371
  27. Lee, S. -H., Ko, C. -I., Jee, Y., Jeong, Y., Kim, M., Kim, J. -S., & Jeon, Y. -J. 2013b. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydr. Polym. 92:84-89. https://doi.org/10.1016/j.carbpol.2012.09.066
  28. Lee, W. -W., Ahn, G., Wijesinghe, W. A. J. P., Yang, X., Ko, C. -I., Kang, M. -C., Lee, B. -J. & Jeon, Y. -J. 2011. Enzymeassisted extraction of Ecklonia cava fermented with Lactobacillus brevis and isolation of an anti-inflammatory polysaccharide. Algae 26:343-350. https://doi.org/10.4490/algae.2011.26.4.343
  29. Leite, C. E., da Cruz Teixeira, A., Cruz, F. F., Concatto, S. C., Amaral, J. H., Bonan, C. D., Campos, M. M., Morrone, F. B. & Battastini, A. M. O. 2012. Analytical method for determination of nitric oxide in zebrafish larvae: toxicological and pharmacological applications. Anal. Biochem. 421:534-540. https://doi.org/10.1016/j.ab.2011.11.038
  30. Liu, R. H. & Hotchkiss, J. H. 1995. Potential genotoxicity of chronically elevated nitric oxide: areview. Mutat. Res. 339:73-89. https://doi.org/10.1016/0165-1110(95)90004-7
  31. Ma, L., Chen, H., Dong, P. & Lu, X. 2013. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 139:503-508. https://doi.org/10.1016/j.foodchem.2013.01.030
  32. Meunier, R. 2012. Stages in the development of a model organism as a platform for mechanistic models in developmental biology: zebrafish, 1970-2000. Stud. Hist. Philos. Biol. Biomed. Sci. 43:522-531. https://doi.org/10.1016/j.shpsc.2011.11.013
  33. Park, K. -H. & Cho, K. -H. 2011. A zebrafish model for the rapid evaluation of pro-oxidative and inflammatory death by lipopolysaccharide, oxidized low-density lipoproteins, and glycated high-density lipoproteins. Fish Shellfish Immunol. 31:904-910. https://doi.org/10.1016/j.fsi.2011.08.006
  34. Pogoda, H. -M. & Hammerschmidt, M. 2007. Molecular genetics of pituitary development in zebrafish. Semin. Cell Dev. Biol. 18:543-558. https://doi.org/10.1016/j.semcdb.2007.04.004
  35. Rezaie, A., Parker, R. D. & Abdollahi, M. 2007. Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig. Dis. Sci. 52:2015-2021. https://doi.org/10.1007/s10620-006-9622-2
  36. Samaroakoon, K. W., Ko, J. -Y., Shah, M. M. R., Lee, J. -H., Kang, M. -C., Kwon, O. -N., Lee, J. -B. & Jeon, Y. -J. 2013. In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae 28:111-119. https://doi.org/10.4490/algae.2013.28.1.111
  37. Shin, E. M., Zhou, H. Y., Guo, L. Y., Kim, J. A., Lee, S. H., Merfort, I., Kang, S. S., Kim, H. S., Kim, S. & Kim, Y. S. 2008. Anti-inflammatory effects of glycerol isolated from Glycyrrhiza uralensis in LPS-stimulated RAW264.7 macrophages. Int. Immunopharmacol. 8:1524-1532. https://doi.org/10.1016/j.intimp.2008.06.008
  38. Shin, H. C., Hwang, H. J., Kang, K. J. & Lee, B. H. 2006. An antioxidant and antiinflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res. 29:165-171. https://doi.org/10.1007/BF02974279
  39. Su, Y. W., Chiou, W. F., Chao, S. H., Lee, M. H., Chen, C. C. & Tsai, Y. C. 2011. Ligustilide prevents LPS-induced iNOS expression in RAW 264.7 macrophages by preventing ROS production and down-regulating the MAPK, NF-$\kappa{B}$ and AP-1 signaling pathways. Int. Immunopharmacol. 11:1166-1172. https://doi.org/10.1016/j.intimp.2011.03.014
  40. Wijesinghe, W. A. J. P., Ahn, G., Lee, W. -W., Kang, M. -C., Kim, E. -A. & Jeon, Y. -J. 2013. Anti-inflammatory activity of phlorotannin-rich fermented Ecklonia cava processing by-product extract in lipopolysaccharide-stimulated RAW 264.7 macrphages. J. Appl. Phycol. 25:1207-1213. https://doi.org/10.1007/s10811-012-9939-5
  41. Wijesinghe, W. A. J. P., Kim, E. -A., Kang, M. -C., Lee, W. -W., Lee, H. -S., Vairappan, C. S. & Jeon, Y. -J. 2014. Assessment of anti-inflammatory effect of $5\beta$-hydroxypalisadin B isolated from red seaweed Laurencia snackeyi in zebrafish embryo in vivo model. Environ. Toxicol. Pharmacol. 37:110-117. https://doi.org/10.1016/j.etap.2013.11.006
  42. Wijesinghe, W. A. J. P., Lee, W. -W., Kim, Y. -M., Kim, Y. -T., Kim, S. -K., Jeon, B. -T., Kim, J. -S., Heu, M. -S., Jung, W. -K., Ahn, G., Lee, K. -W. & Jeon, Y. -J. 2012. Value-added fermentation of Ecklonia cava processing by-product and its antioxidant effect. J. Appl. Phycol. 24:201-209. https://doi.org/10.1007/s10811-011-9668-1
  43. Yang, H. -M., Ham, Y. -M., Yoon, W. -J., Roh, S. W., Jeon, Y. -J., Oda, T., Kang, S. -M., Kang, M. -C., Kim, E. -A., Kim, D. & Kim, K. -N. 2012. Quercitrin protects against ultraviolet B-induced cell death in vitro and an in vivo zebrafish model. J. Photochem. Photobiol. B Biol. 114:126-131. https://doi.org/10.1016/j.jphotobiol.2012.05.020
  44. Yoon, N. Y., Lee, S. -H., Shim, K. B., Lim, C. -W., Lee, M. -H., Cho, H. -A. & Xie, C. 2013. Quinone reductase induction activity of phlorotannins derived from Eisenia bicyclis in Hepa1c1c7 cells. Fish. Aquat. Sci. 16:1-5. https://doi.org/10.5657/FAS.2013.0001
  45. Zhang, D. L., Hu, C. X., Li, D. H. & Liu, Y. D. 2013. Lipid peroxidation and antioxidant responses in zebrafish brain induced by Aphanizomenon flos-aquae DC-1 aphantoxins. Aquat. Toxicol. 144-145:250-256. https://doi.org/10.1016/j.aquatox.2013.10.011
  46. Ziegler, F., Seddiki, L., Marion-Letellier, R., Lavoinne, A. & Dechelotte, P. 2011. Effects of L-glutamine supplementation alone or with antioxidants on hydrogen peroxide-induced injury in human intestinal epithelial cells. E-Spen Eur. E-J. Clin. Nutr. Metab. 6:e211-e216. https://doi.org/10.1016/j.eclnm.2011.07.001

Cited by

  1. Reduction of heavy metal (Pb 2+ ) biosorption in zebrafish model using alginic acid purified from Ecklonia cava and two of its synthetic derivatives 2017, https://doi.org/10.1016/j.ijbiomac.2017.08.027
  2. FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.12.1
  3. A marine algal polyphenol, dieckol, attenuates blood glucose levels by Akt pathway in alloxan induced hyperglycemia zebrafish model vol.6, pp.82, 2016, https://doi.org/10.1039/C6RA12724J
  4. Efficient approach to purification of octaphlorethol A from brown seaweed, Ishige foliacea by centrifugal partition chromatography vol.22, 2017, https://doi.org/10.1016/j.algal.2016.12.006
  5. Brown AlgaEcklonia cavaPolyphenol Extract Ameliorates Hepatic Lipogenesis, Oxidative Stress, and Inflammation by Activation of AMPK and SIRT1 in High-Fat Diet-Induced Obese Mice vol.63, pp.1, 2015, https://doi.org/10.1021/jf502830b
  6. A fucoidan fraction purified from Chnoospora minima ; a potential inhibitor of LPS-induced inflammatory responses vol.104, 2017, https://doi.org/10.1016/j.ijbiomac.2017.07.031
  7. Identification and large isolation of an anti-inflammatory compound from an edible brown seaweed, Undariopsis peterseniana, and evaluation on its anti-inflammatory effect in in vitro and in vivo zebrafish vol.29, pp.3, 2017, https://doi.org/10.1007/s10811-016-1012-3
  8. Isolation of Eckol from Ecklonia cava via Centrifugal Partition Chromatography (CPC) and Characterization of it's Anti-inflammatory Activity vol.48, pp.3, 2015, https://doi.org/10.5657/KFAS.2015.0301
  9. Antioxidant activity of polysaccharide purified from Acanthopanax koreanum Nakai stems in vitro and in vivo zebrafish model vol.127, 2015, https://doi.org/10.1016/j.carbpol.2015.02.043
  10. Antioxidant Activity of Marine Algal Polyphenolic Compounds: A Mechanistic Approach vol.19, pp.7, 2016, https://doi.org/10.1089/jmf.2016.3706
  11. Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae vol.32, pp.3, 2017, https://doi.org/10.4490/algae.2017.32.8.14
  12. Anti-inflammatory effect of polyphenol-rich extract from the red alga Callophyllis japonica in lipopolysaccharide-induced RAW 264.7 macrophages vol.29, pp.4, 2014, https://doi.org/10.4490/algae.2014.29.4.343
  13. Protective effects of polysaccharides from Psidium guajava leaves against oxidative stresses vol.91, 2016, https://doi.org/10.1016/j.ijbiomac.2016.05.111
  14. Identification of sterols from the soft coral Dendronephthya gigantea and their anti-inflammatory potential vol.55, 2017, https://doi.org/10.1016/j.etap.2017.08.003
  15. Application of Glyceroglycolipids, Photosynthetic Pigments and Extracts of Brown Algae for Suppression ROS vol.06, pp.03, 2016, https://doi.org/10.4236/ojms.2016.63031
  16. Sargassum horneri (Turner) C. Agardh ethanol extract inhibits the fine dust inflammation response via activating Nrf2/HO-1 signaling in RAW 264.7 cells vol.18, pp.1, 2018, https://doi.org/10.1186/s12906-018-2314-6
  17. Antioxidant activity of ethyl acetate and methanolic extracts of two marine algae, Nannochloropsis oculata and Gracilaria gracilis - an in vitro assay vol.54, pp.1, 2018, https://doi.org/10.1590/s2175-97902018000117280
  18. Anti-Neuroinflammatory Property of Phlorotannins from Ecklonia cava on Aβ 25-35 -Induced Damage in PC12 Cells vol.17, pp.1, 2014, https://doi.org/10.3390/md17010007
  19. Anti-oxidant and anti-inflammatory activities of ultrasonic-assistant extracted polyphenol-rich compounds from Sargassum muticum vol.37, pp.3, 2019, https://doi.org/10.1007/s00343-019-8138-5
  20. Assessment of the antioxidant and anticancer potential of different isolated strains of cyanobacteria and microalgae from soil and agriculture drain water vol.27, pp.15, 2014, https://doi.org/10.1007/s11356-020-08332-z
  21. Protective effects of extracts from six local strains of Pyropia yezoensis against oxidative damage in vitro and in zebrafish model vol.35, pp.2, 2020, https://doi.org/10.4490/algae.2020.35.5.14
  22. Diphlorethohydroxycarmalol (DPHC) Isolated from the Brown Alga Ishige okamurae Acts on Inflammatory Myopathy as an Inhibitory Agent of TNF-α vol.18, pp.11, 2014, https://doi.org/10.3390/md18110529
  23. Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs vol.8, pp.None, 2021, https://doi.org/10.3389/fcell.2020.620984
  24. Brown Seaweed Food Supplementation: Effects on Allergy and Inflammation and Its Consequences vol.13, pp.8, 2014, https://doi.org/10.3390/nu13082613
  25. Beneficial effects of seaweeds and seaweed-derived bioactive compounds: Current evidence and future prospective vol.39, pp.None, 2014, https://doi.org/10.1016/j.bcab.2021.102242
  26. Sarcodia suieae Acetyl-Xylogalactan Regulates Nile Tilapia (Oreochromis niloticus) Tissue Phagocytotic Activity and Serum Indices vol.10, pp.1, 2014, https://doi.org/10.3390/jmse10010018