• Title/Summary/Keyword: hardware platform

Search Result 591, Processing Time 0.028 seconds

Design of Smart Frame SoC to support the IoT Services (IoT 서비스를 지원하는 Smart Frame SoC 설계)

  • Yang, Dong-hun;Hwang, In-han;Kim, A-ra;Guard, Kanda;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.503-506
    • /
    • 2015
  • In accordance with IoT(Internet of Things) commercialization, the need to design SoC-based hardware platform with wireless communication is increasing. This paper therefor proposes an SoC platform architecture with Smart Frame System inter-communicating between devices. Wireless communication functions and high-performance real-time image processing hardware structure was applied to existing digital photo frame. We developed a smart phone application to control the smart frame through Bluetooth communication. The SoC platform hardware consists of CIS controller, Memory controller, ISP(Image Signal Processing) module for image scaling, Bluetooth Interface for inter-communicating between devices, VGA/TFT-LCD controller for displaying video. The Smart Frame System to support the IoT services was implemented and verified using HBE-SoC-IPD test board equipped with Virtex4 XC4VLX80 FPGA. The operating frequency is 54MHz.

  • PDF

Hardware Accelerated Design on Bag of Words Classification Algorithm

  • Lee, Chang-yong;Lee, Ji-yong;Lee, Yong-hwan
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.26-33
    • /
    • 2018
  • In this paper, we propose an image retrieval algorithm for real-time processing and design it as hardware. The proposed method is based on the classification of BoWs(Bag of Words) algorithm and proposes an image search algorithm using bit stream. K-fold cross validation is used for the verification of the algorithm. Data is classified into seven classes, each class has seven images and a total of 49 images are tested. The test has two kinds of accuracy measurement and speed measurement. The accuracy of the image classification was 86.2% for the BoWs algorithm and 83.7% the proposed hardware-accelerated software implementation algorithm, and the BoWs algorithm was 2.5% higher. The image retrieval processing speed of BoWs is 7.89s and our algorithm is 1.55s. Our algorithm is 5.09 times faster than BoWs algorithm. The algorithm is largely divided into software and hardware parts. In the software structure, C-language is used. The Scale Invariant Feature Transform algorithm is used to extract feature points that are invariant to size and rotation from the image. Bit streams are generated from the extracted feature point. In the hardware architecture, the proposed image retrieval algorithm is written in Verilog HDL and designed and verified by FPGA and Design Compiler. The generated bit streams are stored, the clustering step is performed, and a searcher image databases or an input image databases are generated and matched. Using the proposed algorithm, we can improve convenience and satisfaction of the user in terms of speed if we search using database matching method which represents each object.

A design of PCI-based reconfigurable verification environment for IP design (IP 검증을 위한 PCI 기반 리프로그램머블 설계 기능 에뮬레이션 환경 구현)

  • 최광재;조용권;이문기
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.65-68
    • /
    • 2002
  • The verification of software part and HW/SW interface suffer from the absence of the hardware platform at the end of partitioning and coding phase in design cycle. In this paper we present the design of easy verification for hardware design. Hardware and software engineer can verify their software program and hardware design for a chip that is emulated in proposed verification environment. Besides, designer can easily design the DEMO system.

  • PDF

User Sensitive Data Classification for IoT Gateway Security (사물인터넷 게이트웨이 보안을 위한 사용자 민감 데이터 분류)

  • Heo, Mhanwoo;Park, Kicheol;Hong, Jiman
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.17-24
    • /
    • 2019
  • As IoT technology is widely used in industrial environments, its environmental security issues are becoming more important. In such a context, studies utilizing hardware security functions are being actively carried out. However, previous studies did not consider the performance degradation that occurs when using hardware security functions in IoT environment. Gateway devices that are mainly used in IoT environments are often resource-limited. Utilizing hardware security in such an environment can cause serious performance degradation as the number of IoT devices connected to the gateway increases. Therefore, in this paper, we propose a data classification scheme to efficiently utilize hardware security functions in resource limited environment. We implement a platform with the proposed technique using ARM Trustzone. Performance degradation due to the hardware security functions is measured through experiments on the implemented platform and compared with the performance as of when the proposed technique is applied.

Development of Hardware-linked Simulation Platform for Automation Mechanism Training (자동화 메커니즘 교육을 위한 하드웨어 연동형 시뮬레이션 플랫폼 개발)

  • Kim, Hyun-Hee;Park, Sung-Su;Lee, Kyung-Chang;Hwang, Yeong-Yeun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.34-42
    • /
    • 2015
  • As the industry environment is changing to automated systems, engineering education at university has changed with industrial development. Industry technology will be developed, and the industry environment will become more complicated. Therefore, the knowledge that undergraduates have to acquire in university will be extensive. Industries need a person with expertise to react quickly to rapidly changing technology. Therefore, universities need to endeavor to cultivate manpower in technical fields. This is difficult because the contents of engineering education must react quickly to rapidly changing industry technology. This paper proposes a hardware-linked simulation platform for engineering education on the well-used systems in industrial sites.

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

Development of Educational Robot Platform Based on Omni-directional Mobile Mechanism (전방향 이동 메커니즘 기반의 교육용 로봇 플랫폼 개발)

  • Chu, Baeksuk;Sung, Young Whee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1161-1169
    • /
    • 2013
  • In this paper an omni-directional mobile robot is suggested for educational robot platform. Comparing to other robots, a mobile robot can be easily designed and manufactured due to its simple geometric structure. Moreover, since it is required to have low DOF motion on planar space, fabrication of control system is also simple. In this research, omni-directional wheels were adopted to remove the non-holonomic characteristic of conventional wheels and facilitate control system design. Firstly, geometric structure of a Mecanum wheel which is a most frequently used omni-directional wheel was demonstrated. Then, the organization of the mobile platform was suggested in aspects of mechanism manufacturing and electronic hardware design. Finally, a methodology of control system development was introduced for educational purpose. Due to an intuitive motion generating ability, simple hardware composition, and convenient control algorithm applicability, the omni-directional mobile robot suggested in this research is expected to be a promising educational platform.

A PC-Based Open Robot Control System : PC-ORC (PC에 기반을 둔 개방형 로봇제어시스템 : PC-ORC)

  • 김점구;최경현;홍금식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.415-425
    • /
    • 2000
  • An open architecture manufacturing strategy intends to integrate manufacturing components on a single platform so that a particular component can be easily added and/or replaced. Therefore, the control scheme based upon the open architecture concept is hardware-independent. In this paper, a modular and object oriented approach for a PC-based open robot control system is investigated. A standard reference model for robot systems, which consists of three modules; hardware module, operating system module, and application software module, is first proposed. Then, a PC-based Open Robot Controller(PC-ORC), which can reconfigure robot control systems in various production environments, is developed. The PC-ORC is built upon the object-oriented method, and allows an easy implementation and modification of various modules. The PC-ORC consists of basic softwares, application objects, and additional hardware device on the PC Platform. The application objects are: sequencer, computation unit, servo control, ancillary equipment, external sensor control, and so on. In order to demonstrate the applicability of the PC-ORC, the proposed PC-ORC configuration is applied to an industrial SCARA robot system.

  • PDF

RAVIP: Real-Time AI Vision Platform for Heterogeneous Multi-Channel Video Stream

  • Lee, Jeonghun;Hwang, Kwang-il
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.227-241
    • /
    • 2021
  • Object detection techniques based on deep learning such as YOLO have high detection performance and precision in a single channel video stream. In order to expand to multiple channel object detection in real-time, however, high-performance hardware is required. In this paper, we propose a novel back-end server framework, a real-time AI vision platform (RAVIP), which can extend the object detection function from single channel to simultaneous multi-channels, which can work well even in low-end server hardware. RAVIP assembles appropriate component modules from the RODEM (real-time object detection module) Base to create per-channel instances for each channel, enabling efficient parallelization of object detection instances on limited hardware resources through continuous monitoring with respect to resource utilization. Through practical experiments, RAVIP shows that it is possible to optimize CPU, GPU, and memory utilization while performing object detection service in a multi-channel situation. In addition, it has been proven that RAVIP can provide object detection services with 25 FPS for all 16 channels at the same time.

Virtualization Technology Trends in Satellite/Mobile Communication Systems (위성/이동 통신 시스템에서의 가상화 기술 동향)

  • S.Q. Lee;J.H. Lee;M.S. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.1
    • /
    • pp.36-47
    • /
    • 2024
  • Virtualization technology supports the execution of software unrelated to the hardware environment through the decoupling of software and hardware. Additionally, it enables network slicing, allowing one physical device to be divided and used by a function or service by supporting sharing with isolation. Virtualization enables flexible platform use, allowing a variety of services to be launched without changes or additions to the hardware platform. We describe virtualization technology trends in satellite/mobile communication systems. Basic concepts and technical definitions are included, and the current status of research and development by domestic and foreign organizations, including the Electronics and Telecommunications Research Institute, is analyzed. Finally, future prospects and implications are discussed.