• Title/Summary/Keyword: hardware accelerator

Search Result 115, Processing Time 0.02 seconds

Hardware Design of Special-Purpose Arithmetic Unit for 3-Dimensional Graphics Processor (3차원 그래픽프로세서용 특수 목적 연산장치의 하드웨어 설계)

  • Choi, Byeong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.140-142
    • /
    • 2011
  • In this paper, special purpose arithmetic unit for mobile graphics accelerator is designed. The designed processor supports six operations, such as $1/{\chi}$, $\frac{1}{{\sqrt{x}}$, $log_2x$, $2^x$, $sin(x)$, $cos(x)$. The processor adopts 2nd-order polynomial minimax approximation scheme based on IEEE floating point data format to satisfy accuracy conditions and has 5-stage pipeline structure to meet high operational rates. The SFAU processor consists of 23,000 gates and its estimated operating frequency is about 400 Mhz at operating condition of 65nm CMOS technology. Because the processor can execute all operations with 5-stage pipeline scheme, it has about 400 MOPS(million operations per second) execution rate. Thus, it can be applicable to the 3D mobile graphics processors.

  • PDF

An Efficient VLSI Architecture of Deblocking Filter in H.264 Advanced Video Coding (H.264/AVC를 위한 디블록킹 필터의 효율적인 VLSI 구조)

  • Lee, Sung-Man;Park, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.52-60
    • /
    • 2008
  • The deblocking filter in the H.264/AVC video coding standard helps to reduce the blocking artifacts produced in the decoding process. But it consumes one third of the computational complexity in H.624/AVC decoder, which advocates an efficient design of a hardware accelerator for filtering. This paper proposes an architecture of deblocking filter using two filters and some registers for data reuse. Our architecture improves the throughput and minimize the number of external memory access by increasing data reuse. After initialization, two filters are able to perform filtering operation simultaneously. It takes only 96 clocks to complete filtering for one macroblock. We design and synthesis our architecture using Dongbuanam $0.18{\mu}m$ standard cell library and the maximum clock frequency is 200MHz.

Efficient DSP Architecture For High- Quality Audio Algorithms (고음질 오디오 알고리즘을 위한 효율적인 DSP 설계)

  • Moon, Jong-Ha;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.112-117
    • /
    • 2007
  • This paper presents specialized DSP instructions and their hardware architecture for audio coding algorithms, such as the MPEG-2/4 Advanced Audio Coding(AAC), Dolby AC-3, MPEG-2 Backward Compatible(BC), etc. The proposed architecture is specially designed and optimized for the MDCT/IMDCT(Inverse Modified Discrete Cosine Transform), and Huffman decoding of the AAC decoding algorithm. Performance comparisons show a significant improvement compared with TMS320C62x and ASDSP21060 for the MDCT/IMDCT computation. In addition, the dedicated Huffman decoding accelerator performs decoding and preparing operand in only one cycle. The proposed DPU(Data Processing Unit) consists of 107,860 gates and achieves 150 MIPS.

Implementation of Uncompressed Video Transmission System for Wireless Video Mirroring Service in Portable Multimedia Devices (휴대용 멀티미디어 기기에서의 무선 영상 미러링 서비스를 위한 비압축 영상 전송 시스템의 구현)

  • Lee, Sangjae;Jeon, Youngae;Choi, Sangsung;Cho, Kyoung-Rok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.381-391
    • /
    • 2013
  • Wireless transmission of uncompressed video guarantees higher quality with lower latency than compressed video transmission. Although current wireless technologies cannot fully cover required data rates of about a few Gb/s for full high definition resolution, some wireless technologies such as ultra-wideband (UWB) provide 1 Gb/s data rate which is adequate for uncompressed video transmission in portable devices. In this paper, we propose an uncompressed video transmission system for wireless mirroring services in portable devices. We firstly simulated the performance of uncompressed video transmission using single or multiple 1 Gb/s UWB technology. Then we implemented hardware-based uncompressed video processing block and Gb/s wireless MAC accelerator. Finally, we show the implementation result and the demonstration of uncompressed HD video transmission using multiple 1 Gb/s UWB PHYs.

Implementation of Internet Terminal using G.729.1 Wideband Speech Codec for Next Generation Network (차세대 통신망을 위한 G.729.1 광대역 음성 코덱을 활용한 인터넷 단말 구현)

  • So, Woon-Seob;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10B
    • /
    • pp.939-945
    • /
    • 2008
  • Tn this paper we described the process and the results of an implementation of Internet terminal using G.729.1 wideband speech codec for next generation network. For this purpose firstly we chose a high performance RISC application processor having DSP features for speech codec processing and enhanced Multimedia Accelerator(eMMA) function for video codec. In the implementation of this terminal, we used G.729.1 codec recently standardized in ITU-T which is a new scalable speech and audio codec that extends 0.729 speech coding standard. To adopt G.729.1 codec to this terminal we transformed most of the fixed point C codes which require more complexity into assembly codes so as to minimize processing time in the processor. As a result of this work we reduced the execution time of the original C codes about 80% and operated in real time on the terminal. For video we used H.263/MPEG-4 codec which is supported by the eMMA with hardware in the processor. In the SIP call processing test connected to real network we obtained under looms end-to-end delay and 3.8 MOS value measured with PESQ instrument. Besides this terminal operated well with commercial terminals.