• 제목/요약/키워드: handwritten

검색결과 359건 처리시간 0.085초

A Comprehensive Approach for Tamil Handwritten Character Recognition with Feature Selection and Ensemble Learning

  • Manoj K;Iyapparaja M
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권6호
    • /
    • pp.1540-1561
    • /
    • 2024
  • This research proposes a novel approach for Tamil Handwritten Character Recognition (THCR) that combines feature selection and ensemble learning techniques. The Tamil script is complex and highly variable, requiring a robust and accurate recognition system. Feature selection is used to reduce dimensionality while preserving discriminative features, improving classification performance and reducing computational complexity. Several feature selection methods are compared, and individual classifiers (support vector machines, neural networks, and decision trees) are evaluated through extensive experiments. Ensemble learning techniques such as bagging, and boosting are employed to leverage the strengths of multiple classifiers and enhance recognition accuracy. The proposed approach is evaluated on the HP Labs Dataset, achieving an impressive 95.56% accuracy using an ensemble learning framework based on support vector machines. The dataset consists of 82,928 samples with 247 distinct classes, contributed by 500 participants from Tamil Nadu. It includes 40,000 characters with 500 user variations. The results surpass or rival existing methods, demonstrating the effectiveness of the approach. The research also offers insights for developing advanced recognition systems for other complex scripts. Future investigations could explore the integration of deep learning techniques and the extension of the proposed approach to other Indic scripts and languages, advancing the field of handwritten character recognition.

필기체 문자 영상의 이진화에 관한 연구 (A Study on Binarization of Handwritten Character Image)

  • 최영규;이상범
    • 한국컴퓨터산업학회논문지
    • /
    • 제3권5호
    • /
    • pp.575-584
    • /
    • 2002
  • 온라인 필기체 문자 인식은 필기의 순서와 획의 위치를 알 수 있어 신경망을 이용한 자소의 효과적인 분할로 큰 성과를 이루었다. 그러나 오프라인 필기체 문자 인식은 동적인 정보와 시간적인 정보를 가지고 있지 않고, 다양한 필기와 자소의 겹침이 심하며 획 사이의 잡영을 많이 가지고 있어 불완전한 전처리를 수행하여야 하는 어려움을 가지고 있다. 따라서 오프라인 필기체 문자 인식은 다양한 방법의 연구가 필요하다. 본 논문에서는 Watershed 알고리즘을 오프라인 필기체 한글 문자 인식 전처리에 적용하였다. 여기서 Watershed 알고리즘의 수행 시간과 결과 영상의 품질을 고려해 Watershed 알고리즘 4단계에서 효과적인 적용방법을 제시하였다. 효과적으로 구성된 Watershed 알고리즘을 전처리에 적용함으로써 영상 향상과 이진화에 좋은 결과를 얻었다. 실험에서는 기존의 방법과 본 논문 방법을 수행 시간과 품질로써 평가했다. 실험 결과 기존의 방법은 평균 2.08초, 본 논문 방법은 평균 0.86초의 수행 시간이 걸렸다. 결과 영상의 품질은 본 논문 방법이 기존의 방법에 비하여 문자의 획 사이의 잡영을 효과적으로 처리하였다.

  • PDF

한글필기체의 구조적 특징을 이용한 효율적 기울기 보정 (An Efficient Slant Correction for Handwritten Hangul Strings using Structural Properties)

  • 유대근;김경환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권1_2호
    • /
    • pp.93-102
    • /
    • 2003
  • 본 논문에서는 한글의 구조적 특징이 반영된 획들의 통계적인 분포에 근거한 필기 문자열의 기울기 보정 방법을 제안한다. 기존의 기울기 보정 방법들은 대부분 영문위주의 보정 방법으로, 영문과 달리 2차원적 구조를 갖는 한글에 적용하는데는 많은 문제가 있다. 일반적인 보정 방법을 적용할 경우 한글에 내재하는 강한 대각선획의 영향으로 인한 역보정의 문제가 가장 많이 나타나며. 기울어진 문자열을 제대로 보정하지 못하는 경우도 빈번하다. 제안하는 방법에서는 추출된 획들의 기울기 분포를 K-평균 군집법을 적용하여 수직획과 대각선획의 두 개의 군집으로 분류하고, 가우시안 분포로의 모델링을 통해 대각선획을 제외하고 수직획만을 이용하여 기울기 보정을 수행하였다. 임의의 필기자에 의해 필기된 우편봉투 주소 문자열 1,300개에 대해 제안하는 방법과 기존의 방법들을 적용하여 실험한 결과 제안하는 방법이 기존방법들에 비해 역보정률을 크게 낮추고, 기울어진 문자열에 대해 완벽한 보정 성능을 보여 그 우수성이 입증되었다.

복합 특징과 결합 인식기에 의한 필기체 숫자인식 (Recognition of Handwritten Numerals using Hybrid Features And Combined Classifier)

  • 박중조;송영기;김경민
    • 한국정보통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.14-22
    • /
    • 2001
  • 필기체 숫자는 개인에 따라 필체가 매우 다양하므로 단일 특징과 단일 분류기를 사용하여 오프라인 필기체 숫자인식을 수행할 경우 높은 인식률을 얻기가 어렵다. 이에 본 논문에서는 복합 특징과 결합 인식기를 사용하여 필기체 숫자 인식의 인식률을 향상시키는 방안을 제시한다. 인식률의 향상을 위해, 먼저 상호 보완적인 특징들-방향특징, 교차점특징, 망특징-을 선정하고 이를 사용하여 숫자영상의 전역적 및 국부적 특징을 갖는 세 종류의 새로운 복합 특징을 구성한다. 그리고 패턴 인식기로는 세 개의 신경회로망 분류기를 퍼지 적분으로 결합한 결합 인식기를 사용한다. 본 인식기의 성능 평가를 위해 Concordia 대차의 무제약 필기체 숫자 데이터베이스를 사용하여 실험한 결과 97.85%의 인식률을 달성하였다.

  • PDF

Triangulation Based Skeletonization and Trajectory Recovery for Handwritten Character Patterns

  • Phan, Dung;Na, In-Seop;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.358-377
    • /
    • 2015
  • In this paper, we propose a novel approach for trajectory recovery. Our system uses a triangulation procedure for skeletonization and graph theory to extract the trajectory. Skeletonization extracts the polyline skeleton according to the polygonal contours of the handwritten characters, and as a result, the junction becomes clear and the characters that are touching each other are separated. The approach for the trajectory recovery is based on graph theory to find the optimal path in the graph that has the best representation of the trajectory. An undirected graph model consisting of one or more strokes is constructed from a polyline skeleton. By using the polyline skeleton, our approach accelerates the process to search for an optimal path. In order to evaluate the performance, we built our own dataset, which includes testing and ground-truth. The dataset consist of thousands of handwritten characters and word images, which are extracted from five handwritten documents. To show the relative advantage of our skeletonization method, we first compare the results against those from Zhang-Suen, a state-of-the-art skeletonization method. For the trajectory recovery, we conduct a comparison using the Root Means Square Error (RMSE) and Dynamic Time Warping (DTW) in order to measure the error between the ground truth and the real output. The comparison reveals that our approach has better performance for both the skeletonization stage and the trajectory recovery stage. Moreover, the processing time comparison proves that our system is faster than the existing systems.

불균형 데이터 처리를 위한 과표본화 기반 앙상블 학습 기법 (Oversampling-Based Ensemble Learning Methods for Imbalanced Data)

  • 김경민;장하영;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제20권10호
    • /
    • pp.549-554
    • /
    • 2014
  • 필기체 낱글자 인식을 위해서 사용되는 데이터는 일반적으로 다수의 사용자들로부터 수집된 자연언어 문장들을 이용하기 때문에 해당 언어의 언어적 특성에 따라서 낱글자의 종류별 개수 차이가 매우 큰 특징이 있다. 일반적인 기계학습 문제에서 학습데이터의 불균형 문제는 성능을 저하시키는 중요한 요인으로 작용하지만, 필기체 인식에서는 데이터 자체의 높은 분산과 비슷한 모양의 낱글자 등이 성능 저하의 주요인이라 생각하기 때문에 이를 크게 고려하지 않고 있다. 본 논문에서는 이러한 데이터의 불균형 문제를 고려하여 필기체 인식기의 성능을 향상시킬 수 있는 과표본화 기반의 앙상블 학습 기법을 제안한다. 제안한 방법은 데이터의 불균형 문제를 고려하지 않은 방법보다 전체적으로 향상된 성능을 보일 뿐만 아니라 데이터의 개수가 부족한 낱글자들의 분류성능에 있어서도 향상된 결과를 보여준다.

개선된 동적 타임 워핑 알고리즘을 이용한 효율적인 필기문자 감정 (Efficient Handwritten Character Verification Using an Improved Dynamic Time Warping Algorithm)

  • 장석우;박영재;김계영
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권7호
    • /
    • pp.19-26
    • /
    • 2010
  • 본 논문에서는 온라인 환경에서 필기 문자열을 입력받고, 입력된 문자열의 유사성을 자동으로 분석하여 두 필적이 동일인에 의해 작성된 것인지를 판단하는 새로운 필적 감정 방법을 제안한다. 제안된 방법에서는 먼저 온라인으로 입력된 문자열에 회전 프로젝션(circular projection) 방법을 적용하여 모양, 방향 등과 같이 문자열이 가진 고유의 특징을 추출하여 벡터의 형태로 저장한다. 그런 다음, 문자 인식 분야에서 많이 사용되는 기존의 동적 타임 워핑 알고리즘을 개선하여, 이를 입력된 두 문자열의 특징 벡터의 유사성을 추출하는데 적용한다. 본 논문에서 개선된 동적 타임 워핑 알고리즘은 최적화 문제에서 좋은 결과를 산출한다고 알려진 분기한정법(branch and bound)의 개념을 기존의 동적 타임 워핑 알고리즘에 효과적으로 결합함으로써 기존의 동적 타임 워핑 알고리즘의 효율을 향상시켰다. 제안된 필기 문자열 감정 알고리즘의 성능을 확인하기 위한 실험에서는 다양하게 입력된 필기 문자열을 가지고 제안된 방법의 성능을 비교 하였으며, 그 결과 제안된 방법이 기존의 알고리즘에 비해 보다 효율적으로 필적을 감정하였음을 검증하였다.

필기 숫자의 기계 인식을 위한 인간의 필기 숫자 인식 실험에 대한 고찰 (A Study on Human Recognition Experiments with Handwritten Digit for Machine Recognition of Handwritten Digit)

  • 윤성수;정현숙;이광오;이일병;이상호
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.373-380
    • /
    • 2008
  • 지금까지 기계 기반의 필기 숫자 인식 방법에 대한 많은 연구가 진행되어 왔다. 그러나 여전히 인간이 만족할 만한 인식 성능을 이루지는 못하였다. 이러한 배경에는 단순히 인식률을 나타내는 수치가 낮은 것도 한 부분을 차지 하지만, 인간이 수긍할 수 없는 오류 성향도 중요한 부분을 차지한다. 그러므로 본 논문에서는 실제 인간의 숫자 인식이 어떻게 이루어지는지를 확인하는 실험을 먼저 수행하고, 이것에 근거하여 기계 인식을 위하여 필요한 요소들이 무엇인지를 고찰하도록 하였다. 실험결과 한쪽 또는 양쪽 방향으로 혼동하는 숫자 쌍, 전혀 혼동하지 않는 숫자 쌍, 오류 발생의 중복성 등의 결과를 비교 분석하여 인간이 인식과정에서 중요하게 고려하는 특징들을 찾아냈고, 그 결과에 근거하여 기계 인식에 있어서 더 높은 인식 성능을 발휘할 수 있고, 더 나아가 인간적인 측면에서 보다 더 신뢰할 수 있는 인식결과를 이끌어 낼 수 있는 접근 방향에 대하여 제시하였다.

딥러닝에 의한 한글 필기체 교정 어플 구현 (An Implementation of Hangul Handwriting Correction Application Based on Deep Learning)

  • 이재형;조민영;김진수
    • 한국산업정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.13-22
    • /
    • 2024
  • 현재 디지털 기기의 확산과 함께 일상에서 손으로 쓰는 글씨의 비중은 점점 줄어들고 있다. 키보드와 터치스크린의 활용도 증가에 따라 한글 필기체의 품질 저하는 어린 학생부터 성인까지 넓은 범위의 한글 문서에서 관찰되고 있다. 그러나 한글 필기체는 여전히 개인적인 고유한 특징을 포함하면서 가독성을 제공하는 많은 문서 작성에 필요하다. 이를 위해 본 논문에서는 손으로 쓴 한글 필기체의 품질을 개선하고, 교정하기 위한 목적의 어플 구현을 목적으로 한다. 제안된 어플은 CRAFT(Character-Region Awareness For Text Detection) 모델을 사용하여 필기체 영역을 검출하고, 딥러닝으로서 VGG-Feature-Extraction 모델을 사용하여 필기체의 특징을 학습한다. 이때 사용자가 작성한 한글 필기체의 음절 단위로 신뢰도를 인식률로 제시하고, 또한, 후보 폰트들중에서 가장 유사한 글자체를 추천하도록 구현한다. 다양한 실험을 통해 제안한 어플은 기존의 상용화된 문자 인식 소프트웨어와 비교할만한 우수한 인식률을 제공함을 확인할 수 있다.

A Unicode based Deep Handwritten Character Recognition model for Telugu to English Language Translation

  • BV Subba Rao;J. Nageswara Rao;Bandi Vamsi;Venkata Nagaraju Thatha;Katta Subba Rao
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.101-112
    • /
    • 2024
  • Telugu language is considered as fourth most used language in India especially in the regions of Andhra Pradesh, Telangana, Karnataka etc. In international recognized countries also, Telugu is widely growing spoken language. This language comprises of different dependent and independent vowels, consonants and digits. In this aspect, the enhancement of Telugu Handwritten Character Recognition (HCR) has not been propagated. HCR is a neural network technique of converting a documented image to edited text one which can be used for many other applications. This reduces time and effort without starting over from the beginning every time. In this work, a Unicode based Handwritten Character Recognition(U-HCR) is developed for translating the handwritten Telugu characters into English language. With the use of Centre of Gravity (CG) in our model we can easily divide a compound character into individual character with the help of Unicode values. For training this model, we have used both online and offline Telugu character datasets. To extract the features in the scanned image we used convolutional neural network along with Machine Learning classifiers like Random Forest and Support Vector Machine. Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMS-P) and Adaptative Moment Estimation (ADAM)optimizers are used in this work to enhance the performance of U-HCR and to reduce the loss function value. This loss value reduction can be possible with optimizers by using CNN. In both online and offline datasets, proposed model showed promising results by maintaining the accuracies with 90.28% for SGD, 96.97% for RMS-P and 93.57% for ADAM respectively.