• Title/Summary/Keyword: hand work

Search Result 1,679, Processing Time 0.027 seconds

Optimal 3D Grasp Planning for unknown objects (임의 물체에 대한 최적 3차원 Grasp Planning)

  • 이현기;최상균;이상릉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.462-465
    • /
    • 2002
  • This paper deals with the problem of synthesis of stable and optimal grasps with unknown objects by 3-finger hand. Previous robot grasp research has analyzed mainly with either unknown objects 2D by vision sensor or unknown objects, cylindrical or hexahedral objects, 3D. Extending the previous work, in this paper we propose an algorithm to analyze grasp of unknown objects 3D by vision sensor. This is archived by two steps. The first step is to make a 3D geometrical model of unknown objects by stereo matching which is a kind of 3D computer vision technique. The second step is to find the optimal grasping points. In this step, we choose the 3-finger hand because it has the characteristic of multi-finger hand and is easy to modeling. To find the optimal grasping points, genetic algorithm is used and objective function minimizing admissible farce of finger tip applied to the object is formulated. The algorithm is verified by computer simulation by which an optimal grasping points of known objects with different angles are checked.

  • PDF

The Optimal Grasp Planning by Using a 3-D Computer Vision Technique (3차원 영상처리 기술을 이용한 Grasp planning의 최적화)

  • 이현기;김성환;최상균;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.54-64
    • /
    • 2002
  • This paper deals with the problem of synthesis of stable and optimal grasps with unknown objects by 3-finger hand. Previous robot grasp research has mainly analyzed with either unknown objects 2-dimensionally by vision sensor or known objects, such as cylindrical objects, 3-dimensionally. As extending the previous work, in this study we propose an algorithm to analyze grasp of unknown objects 3-dimensionally by using vision sensor. This is archived by two steps. The first step is to make a 3-dimensional geometrical model for unknown objects by using stereo matching. The second step is to find the optimal grasping points. In this step, we choose the 3-finger hand which has the characteristic of multi-finger hand and is easy to model. To find the optimal grasping points, genetic algorithm is employed and objective function minimizes the admissible force of finger tip applied to the objects. The algorithm is verified by computer simulation by which optimal grasping points of known objects with different angle are checked.

3-dimensional formation system using a robot hand

  • Morita, Keita;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.366-369
    • /
    • 1992
  • In this paper we propose a 3-dimensional formation system using an arc welding robot. The principle of our system is just only to accumulate welding beads, so that the target 3-dimensional surfaces can be built up. Considering the effects of the gravity on the arc welding, the welding torch is steadily clamped and the position and the posture of the target board on which target work is formed is controlled by a 6-axis robot hand. Movements of the target board are controlled considering the 3dimensional shape of the target and the accumulating speed of the welding bead. In order to realize such systems, a distance sensor is mounted on the tip of the robot hand. And a coordinate transformation technique is employed

  • PDF

A study on an error recovery expert system in the advanced teleoperator system (지적 원격조작시스템의 일환으로서 에러회복 전문가 시스템에 관한 연구)

  • 이순요;염준규;오제상;이창민
    • Journal of the Ergonomics Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.19-28
    • /
    • 1987
  • If an error occurs in the automatic mode when the advanced teleoperator system performs a task in hostile environment, then the mode changes into the manual mode. The operation by program and the operation by hyman recover the error in the manual mode. The system resumew the automatic mode and continues the given task. In order to utilize the inverse kinematics as means of the operation by program in the manual mode, Lee and Nagamachi determined the end point of the robot trajectory planning which varied with the height of the task object recognized by a T.V monitor, solved the end point by the fuzzy set theory, and controlled the position of the robot hand by the inverse kinematics and the posture of the robot hand by the operation by human. But the operation by human did take a lot of task time because the position and the posture of the robot hand were separately controlled. To reduce the task time by human, this paper developes an error recovery expert system (ERES). The position of the robot hand is controlled by the inverse kinematics of the cartesian coordinate system to the end point which is deter- mined by the fuzzy set theory. The posture of the robot hand is controlled by the modulality of the robot hand's motion which is made by the posture of the task object. The knowledge base and the inference engine of the ERES is developed using the muLISP-86 language. The experimental results show that the average task time by human the ERES which was performed by the integration of the position and the posture control of the robot hand is shorter than that of the research, done by the preliminary experiment, which was performed by the separation of the position and the posture control of the robot hand. A further study is likely to research into an even more intelligent robot system control usint a superimposed display and digitizer which can present two-dimensional coordinate of the work space for the convenience of human interaction.

  • PDF

Optimal Grip Span of A-type Pliers in a Maximum Gripping Task

  • Kong, Yong-Ku;Jung, Jin Woo;Kim, Sangmin;Jung, Heewoong;Yoo, Hakje;Kim, Dae-Min;Kang, Hyun-Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.511-516
    • /
    • 2013
  • Objective: The objective of this study is designing an optimal hand tool through maximum grip force study accordance to the hand grip span. Background: In order to prevent musculoskeletal diseases, studies on hand tool design are proceeding based on grip strength, finger force, and contribution of individual finger force on total grip strength. However, experimental apparatus using a tool that is actually used in work place was almost non-existent. Method: 19 males were participated in an experiment. Using the load cell inserted real plier, finger force, grip strength, and subjective discomfort rate of both hands (dominant and non-dominant) were measured in 5 different hand grip span(45mm, 50mm, 60mm, 70mm, and 80mm). Results: There was significant difference(p<0.001) of total grip strength, individual finger force and subjective discomfort rating according to various hand grip span(45, 50, 60, 70, and 80mm). Also, statistically significant different(p<0.001) was shown between the dominant hand and non-dominant hand. In addition, individual finger force in maximum grip was in order of middle finger, ring finger, index finger, and little finger. Conclusion: Optimal grip span of pliers that exerting maximum grip strength is 50~60mm. Application: This finding is expected to be used for designing proper pliers.

A Study of Prevalence to Musculoskeletal Disorders among Some Manufacturing Workers (제조업체 근로자의 직업관련성 근골격계질환의 유병율에 관한 연구)

  • Kim, Sung-Mi;Jo, Young-Ha;Kim, Yong-Kwon
    • Journal of Korean Physical Therapy Science
    • /
    • v.11 no.3
    • /
    • pp.49-59
    • /
    • 2004
  • The purpose of this study was carried out to rind out the prevalence of occupational musculoskeletal disorders among workers in manufacturing industries, so that the result could provide basic data necessary to prevent musculoskeletal disorders. Information on general characteristics, occupational characteristics, and musculoskeletal symptoms were obtained by a self-administered questionnaire between October and November in 2002, from 345 workers in Kim-hae and Ulsan, Kyung-nam province. The data were analyzed for chi-square test by using SPSS NVIN 10.0 program. The results are as follows: According to the self-reports, among musculoskeletal symptoms complain on shoulders are topping for 50.4%, low back is followed for 40.6%, leg/foot 35.7%, neck 34.5%, wrist/hand/finger 30.1%, and arm 24.3%. According to occupational characteristics prevalence by anatomical site, about neck pains 119 subject, occupational satisfaction is 62,6% in moderate group, work shift is 71.8% in no work shift group, each significant high. Symptom complain rate of 104 patients who complained on wrist, hand and finger pain is significantly related that 36.5% below 5 years and 36.5% above 15 years have been worked group. And each of them are significantly related 77.9% in labor workers group, 70% in no work shift group, 54.8% in frequent transfer group. Among 140 subjects who have back pain, that is significationtly reported on 37.1% below 5 years and 37.9% above 15 years and 60.0% moderate satisfied occupation group have been worked group. Therefore, some efforts should be proceeded such as improvement of working condition, flexibility for changing work, more pleasant and better working environment, and etc.

  • PDF

Decision Making Model using Multiple Matrix Analysis for Optimum Construction Method Selection (다중 매트릭스 분석 기법을 이용한 최적 건축공법 선정 의사결정지원 모델)

  • Lee, Jong-Sik;Lim, Myung-Kwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.331-339
    • /
    • 2016
  • According to high-rise, complexation, and enlargement of buildings, various construction methods are being developed, and the significance of construction method selection about main work types has emerged as a major interest. However, it has been pointed out that hand-on workers cannot consider project characteristics carefully, and they lack an objective standard or reference for main construction method selection. Hence, the selection is being made depending on hand-on workers' experience and intuition. To solve this problem, various studies have proceeded for construction method selection of main work types using Artificial Intelligence like Fuzzy, AHP and Case-based reasoning. It is difficult to apply many different kinds of construction method selection to every main work type with consideration for characteristics of work types and condition of a construction site when selecting construction method in the field. Accordingly, this study proposed the decision-making model which can apply to fields easily. Using matrix analysis and liner transformation, this study verified consistency of study models applied in the process of soil retaining selection with a case study.

Availability Evaluation of DGPS and Smart Device for Field Survey (DGPS와 스마트 디바이스를 이용한 토지조사의 활용성 평가)

  • Park, Joon Kyu;Jung, Kap Yong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.12
    • /
    • pp.631-638
    • /
    • 2016
  • GNSS(Global Navigation Satellite System) such as GPS(Global Positioning System), GLONASS(GLObal NAvigation Satellite System) has been used in various fields for construction of geospatial inforamtion. But RTK or VRS method for high accuracy has some bad points like requirement of additional GNSS device and internet. So, this methods are difficult to take advantage of field survey. In this study, In this study, experiments using DGPS handheld devices and smart devices that can maximize mobility through was to suggest ways to improve the efficiency of field survey work. As a results, field survey work with smart devices is difficult to apply the limits of accuracy yet. On the other hand, DGPS has been found possible to determine the position accuracy within 1m. If DGPS is used in related work can greatly improve the efficiency of field survey work, which is currently much is done by hand, it is expected to serve as the basis for a structured GIS data management.

A typology of relative importance to the work and family life of married men (기혼 남성의 삶에서 일과 가정생활이 차지하는 비중에 따른 유형 및 유형별 특성)

  • Lee, Sujin;Koo, Hye-Ryoung
    • Journal of Family Resource Management and Policy Review
    • /
    • v.18 no.4
    • /
    • pp.135-151
    • /
    • 2014
  • This study focused on issues of relative importance to the work and family life of married men. The work was carried out to determine, when men are in any category, how to increase their satisfaction with their work and family life. Data from 896 married men with their youngest children under 18 years of age was collected and analyzed. Cluster analysis was performed to classify the categories depending on the relative importance of work as compared to family life. I obtained four types relating to the relative importance of work compared to family life. The results are as follows. First, the score of subjective balance which was perceived by the men was slightly higher than the normal range, at 3.27 points. Second, work-family negative spillover is bigger than family-work negative spillover. On the other hand, family-work positive spillover is bigger than work-family positive spillover. Third, in the category in which the difference is largest between the relative importance of work and family life, the men crave the value of nonwork. It seems that in order to bring a particular gravity to work, there is a possibility that the areas outside of work will be suppressed. Also, in this category, both the satisfaction of family life and job satisfaction were low; this will be a point to consider when discussing the problem of the balance of work and family.

Usefulness of applying Macro for Brain SPECT Processing (Brain SPECT Processing에 있어서 Macro Program 사용의 유용성)

  • Kim, Gye-Hwan;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyeon-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.35-39
    • /
    • 2009
  • Purpose: Diagnostic and functional imaging softwares in Nuclear Medicine have been developed significantly. But, there are some limitations which like take a lot of time. In this article, we introduced that the basic concept of macro to help understanding macro and its application to Brain SPECT processing. We adopted macro software to SPM processing and PACS verify processing of Brain SPECT processing. Materials and Methods: In Brain SPECT, we choose SPM processing and two PACS works which have large portion of a work. SPM is the software package to analyze neuroimaging data. And purpose of SPM is quantitative analysis between groups. Results are made by complicated process such as realignment, normalization, smoothing and mapping. We made this process to be more simple by using macro program. After sending image to PACS, we directly input coordinates of mouse using simple macro program for processes of color mapping, adjustment of gray scale, copy, cut and match. So we compared time for making result by hand with making result by macro program. Finally, we got results by applying times to number of studies in 2007. Results: In 2007, the number of SPM studies were 115 and the number of PACS studies were 834 according to Diamox study. It was taken 10 to 15 minutes for SPM work by hand according to expertness and 5 minutes and a half was uniformly needed using Macro. After applying needed time to the number of studies, we calculated an average time per a year. When using SPM work by hand according to expertness, 1150 to 1725 minutes (19 to 29 hours) were needed and 632 seconds (11 hours) were needed for using Macro. When using PACS work by hand, 2 to 3 minutes were needed and for using Macro, 45 seconds were needed. After applying theses time to the number of studies, when working by hand, 1668 to 2502 minutes (28 to 42 hours) were needed and for using Macro, 625 minutes (10 hours) were needed. Following by these results, it was shown that 1043 to 1877 (17 to 31 hours were saved. Therefore, we could save 45 to 63% for SPM, 62 to 75% for PACS work and 55 to 70% for total brain SPECT processing in 2007. Conclusions: On the basis of the number of studies, there was significant time saved when we applied Macro to brain SPECT processing and also it was shown that even though work is taken a little time, there is a possibility to save lots of time according to the number of studies. It gives time on technologist's side which makes radiological technologist more concentrate for patients and reduce probability of mistake. Appling Macro to brain SPECT processing helps for both of radiological technologists and patients and contribute to improve quality of hospital service.

  • PDF