• Title/Summary/Keyword: hand pose

Search Result 106, Processing Time 0.024 seconds

Robust Estimation of Hand Poses Based on Learning (학습을 이용한 손 자세의 강인한 추정)

  • Kim, Sul-Ho;Jang, Seok-Woo;Kim, Gye-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1528-1534
    • /
    • 2019
  • Recently, due to the popularization of 3D depth cameras, new researches and opportunities have been made in research conducted on RGB images, but estimation of human hand pose is still classified as one of the difficult topics. In this paper, we propose a robust estimation method of human hand pose from various input 3D depth images using a learning algorithm. The proposed approach first generates a skeleton-based hand model and then aligns the generated hand model with three-dimensional point cloud data. Then, using a random forest-based learning algorithm, the hand pose is strongly estimated from the aligned hand model. Experimental results in this paper show that the proposed hierarchical approach makes robust and fast estimation of human hand posture from input depth images captured in various indoor and outdoor environments.

Developing Interactive Game Contents using 3D Human Pose Recognition (3차원 인체 포즈 인식을 이용한 상호작용 게임 콘텐츠 개발)

  • Choi, Yoon-Ji;Park, Jae-Wan;Song, Dae-Hyeon;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.619-628
    • /
    • 2011
  • Normally vision-based 3D human pose recognition technology is used to method for convey human gesture in HCI(Human-Computer Interaction). 2D pose model based recognition method recognizes simple 2D human pose in particular environment. On the other hand, 3D pose model which describes 3D human body skeletal structure can recognize more complex 3D pose than 2D pose model in because it can use joint angle and shape information of body part. In this paper, we describe a development of interactive game contents using pose recognition interface that using 3D human body joint information. Our system was proposed for the purpose that users can control the game contents with body motion without any additional equipment. Poses are recognized comparing current input pose and predefined pose template which is consist of 14 human body joint 3D information. We implement the game contents with the our pose recognition system and make sure about the efficiency of our proposed system. In the future, we will improve the system that can be recognized poses in various environments robustly.

Marker Classification by Sensor Fusion for Hand Pose Tracking in HMD Environments using MLP (HMD 환경에서 사용자 손의 자세 추정을 위한 MLP 기반 마커 분류)

  • Vu, Luc Cong;Choi, Eun-Seok;You, Bum-Jae
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.920-922
    • /
    • 2018
  • This paper describes a method to classify simple circular artificial markers on surfaces of a box on the back of hand to detect the pose of user's hand for VR/AR applications by using a Leap Motion camera and two IMU sensors. One IMU sensor is located in the box and the other IMU sensor is fixed with the camera. Multi-layer Perceptron (MLP) algorithm is adopted to classify artificial markers on each surface tracked by the camera using IMU sensor data. It is experimented successfully in real-time, 70Hz, under PC environments.

Pictorial Model of Upper Body based Pose Recognition and Particle Filter Tracking (그림모델과 파티클필터를 이용한 인간 정면 상반신 포즈 인식)

  • Oh, Chi-Min;Islam, Md. Zahidul;Kim, Min-Wook;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.186-192
    • /
    • 2009
  • In this paper, we represent the recognition method for human frontal upper body pose. In HCI(Human Computer Interaction) and HRI(Human Robot Interaction) when a interaction is established the human has usually frontal direction to the robot or computer and use hand gestures then we decide to focus on human frontal upper-body pose, The two main difficulties are firstly human pose is consist of many parts which cause high DOF(Degree Of Freedom) then the modeling of human pose is difficult. Secondly the matching between image features and modeling information is difficult. Then using Pictorial Model we model the human main poses which are mainly took the space of frontal upper-body poses and we recognize the main poses by making main pose database. using determined main pose we used the model parameters for particle filter which predicts the posterior distribution for pose parameters and can determine more specific pose by updating model parameters from the particle having the maximum likelihood. Therefore based on recognizing main poses and tracking the specific pose we recognize the human frontal upper body poses.

  • PDF

Model Postures at Fashion Shows According to Their Clothing Fashion Images: Focusing on Elegance Image and Neutral-gender Image (패션이미지에 따른 패션쇼 모델의 신체연출에 관한연구 - (제1보) 우아미와 중성미를 중심으로 -)

  • Heo, MIn-Jung;Chung, Sung-Jee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.2
    • /
    • pp.31-40
    • /
    • 2014
  • The purpose of the study was to examine model postures at fashion shows with respect to expressing fashion images including elegance and neutral-gender images. Data were gathered from the fashion shows held 2000 S/S through 2009 F/W, when elegance and neutral-gender fashion images were obvious in fashion collections. Three designer brands representing elegance and neutral-gender fashion images were selected by the researcher and fashion specialists including graduate students majoring in fashion. The fashion collection photos representing each image were selected from style.com, a website which contains four world's biggest fashion collections. The results showed different hand positions as a model posture according to fashion images. In the neutral-gender image, 16 photos (47%) showed a hand position at pockets, in the elegance image, 24 photos (82.3%) showed a hand position laying down by the sides. Also, walking pose was shown to be different between two fashion images. In the neutral-gender fashion image, 16 photos (52.9%) revealed a pose of 'natural walk', while 29 photos (100%) showed a pose of 'walk in a straight line' in the elegance imaged fashion. In conclusion, the neutral-gender image photos showed the pocket-positioned hand and the 'natural walk' poses more than elegance image photos, and elegance image photos revealed the hand position laying down by the sides and the 'walk in a straight line' poses than the photos of the neutral-gender image.

  • PDF

A Real-time Hand Pose Recognition Method with Hidden Finger Prediction (은닉된 손가락 예측이 가능한 실시간 손 포즈 인식 방법)

  • Na, Min-Young;Choi, Jae-In;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.12 no.5
    • /
    • pp.79-88
    • /
    • 2012
  • In this paper, we present a real-time hand pose recognition method to provide an intuitive user interface through hand poses or movements without a keyboard and a mouse. For this, the areas of right and left hands are segmented from the depth camera image, and noise removal is performed. Then, the rotation angle and the centroid point of each hand area are calculated. Subsequently, a circle is expanded at regular intervals from a centroid point of the hand to detect joint points and end points of the finger by obtaining the midway points of the hand boundary crossing. Lastly, the matching between the hand information calculated previously and the hand model of previous frame is performed, and the hand model is recognized to update the hand model for the next frame. This method enables users to predict the hidden fingers through the hand model information of the previous frame using temporal coherence in consecutive frames. As a result of the experiment on various hand poses with the hidden fingers using both hands, the accuracy showed over 95% and the performance indicated over 32 fps. The proposed method can be used as a contactless input interface in presentation, advertisement, education, and game applications.

The Development of a Real-Time Hand Gestures Recognition System Using Infrared Images (적외선 영상을 이용한 실시간 손동작 인식 장치 개발)

  • Ji, Seong Cheol;Kang, Sun Woo;Kim, Joon Seek;Joo, Hyonam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1100-1108
    • /
    • 2015
  • A camera-based real-time hand posture and gesture recognition system is proposed for controlling various devices inside automobiles. It uses an imaging system composed of a camera with a proper filter and an infrared lighting device to acquire images of hand-motion sequences. Several steps of pre-processing algorithms are applied, followed by a background normalization process before segmenting the hand from the background. The hand posture is determined by first separating the fingers from the main body of the hand and then by finding the relative position of the fingers from the center of the hand. The beginning and ending of the hand motion from the sequence of the acquired images are detected using pre-defined motion rules to start the hand gesture recognition. A set of carefully designed features is computed and extracted from the raw sequence and is fed into a decision tree-like decision rule for determining the hand gesture. Many experiments are performed to verify the system. In this paper, we show the performance results from tests on the 550 sequences of hand motion images collected from five different individuals to cover the variations among many users of the system in a real-time environment. Among them, 539 sequences are correctly recognized, showing a recognition rate of 98%.

A Robust Hand Recognition Method to Variations in Lighting (조명 변화에 안정적인 손 형태 인지 기술)

  • Choi, Yoo-Joo;Lee, Je-Sung;You, Hyo-Sun;Lee, Jung-Won;Cho, We-Duke
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.25-36
    • /
    • 2008
  • In this paper, we present a robust hand recognition approach to sudden illumination changes. The proposed approach constructs a background model with respect to hue and hue gradient in HSI color space and extracts a foreground hand region from an input image using the background subtraction method. Eighteen features are defined for a hand pose and multi-class SVM(Support Vector Machine) approach is applied to learn and classify hand poses based on eighteen features. The proposed approach robustly extracts the contour of a hand with variations in illumination by applying the hue gradient into the background subtraction. A hand pose is defined by two Eigen values which are normalized by the size of OBB(Object-Oriented Bounding Box), and sixteen feature values which represent the number of hand contour points included in each subrange of OBB. We compared the RGB-based background subtraction, hue-based background subtraction and the proposed approach with sudden illumination changes and proved the robustness of the proposed approach. In the experiment, we built a hand pose training model from 2,700 sample hand images of six subjects which represent nine numerical numbers from one to nine. Our implementation result shows 92.6% of successful recognition rate for 1,620 hand images with various lighting condition using the training model.

A Study on Hand-signal Recognition System in 3-dimensional Space (3차원 공간상의 수신호 인식 시스템에 대한 연구)

  • 장효영;김대진;김정배;변증남
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.103-114
    • /
    • 2004
  • This paper deals with a system that is capable of recognizing hand-signals in 3-dimensional space. The system uses 2 color cameras as input devices. Vision-based gesture recognition system is known to be user-friendly because of its contact-free characteristic. But as with other applications using a camera as an input device, there are difficulties under complex background and varying illumination. In order to detect hand region robustly from a input image under various conditions without any special gloves or markers, the paper uses previous position information and adaptive hand color model. The paper defines a hand-signal as a combination of two basic elements such as 'hand pose' and 'hand trajectory'. As an extensive classification method for hand pose, the paper proposes 2-stage classification method by using 'small group concept'. Also, the paper suggests a complementary feature selection method from images from two color cameras. We verified our method with a hand-signal application to our driving simulator.

A Study on the Improvement of Pose Information of Objects by Using Trinocular Vision System (Trinocular Vision System을 이용한 물체 자세정보 인식 향상방안)

  • Kim, Jong Hyeong;Jang, Kyoungjae;Kwon, Hyuk-dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.223-229
    • /
    • 2017
  • Recently, robotic bin-picking tasks have drawn considerable attention, because flexibility is required in robotic assembly tasks. Generally, stereo camera systems have been used widely for robotic bin-picking, but these have two limitations: First, computational burden for solving correspondence problem on stereo images increases calculation time. Second, errors in image processing and camera calibration reduce accuracy. Moreover, the errors in robot kinematic parameters directly affect robot gripping. In this paper, we propose a method of correcting the bin-picking error by using trinocular vision system which consists of two stereo cameras andone hand-eye camera. First, the two stereo cameras, with wide viewing angle, measure object's pose roughly. Then, the 3rd hand-eye camera approaches the object, and corrects the previous measurement of the stereo camera system. Experimental results show usefulness of the proposed method.