DOI QR코드

DOI QR Code

Robust Estimation of Hand Poses Based on Learning

학습을 이용한 손 자세의 강인한 추정

  • Received : 2019.08.28
  • Accepted : 2019.09.17
  • Published : 2019.12.31

Abstract

Recently, due to the popularization of 3D depth cameras, new researches and opportunities have been made in research conducted on RGB images, but estimation of human hand pose is still classified as one of the difficult topics. In this paper, we propose a robust estimation method of human hand pose from various input 3D depth images using a learning algorithm. The proposed approach first generates a skeleton-based hand model and then aligns the generated hand model with three-dimensional point cloud data. Then, using a random forest-based learning algorithm, the hand pose is strongly estimated from the aligned hand model. Experimental results in this paper show that the proposed hierarchical approach makes robust and fast estimation of human hand posture from input depth images captured in various indoor and outdoor environments.

최근 들어, 3차원의 깊이 카메라의 대중화로 인해서 RGB 영상에서 수행되던 연구에 새로운 관심과 기회가 생겼지만 사람의 손 자세의 추정은 여전히 어려운 주제 중의 하나로 분류되고 있다. 본 논문에서는 다양하게 입력되는 3차원의 깊이 영상으로부터 사람의 손의 자세를 학습 알고리즘을 이용하여 강인하게 추정하는 방법을 제안한다. 제안된 접근 방법에서는 먼저 뼈대 기반의 손 모델을 생성한 다음, 생성된 손 모델을 3차원의 포인트 클라우드 데이터에 정렬한다. 그런 다음, 랜덤 포레스트 기반의 학습 알고리즘을 이용하여 정렬된 손 모델로부터 손의 자세를 강인하게 추정한다. 본 논문의 실험 결과에서는 제안된 접근 방법이 다양한 실내외의 환경에서 촬영된 입력 영상으로부터 사람의 손의 자세를 강인하고 빠르게 추정한다는 것을 보여준다.

Keywords

References

  1. K. A. P. Costa, J. P. Papa, C. O. Lisboa, R. Munoz, and V. H. C. Albuquerque, "Internet of things: a survey on machine learning-based intrusion detection approaches," Computer Networks, vol. 151, pp. 147-157, Mar. 2019. https://doi.org/10.1016/j.comnet.2019.01.023
  2. J.-E. Lee, "Robust influenza analysis algorithm based on image processing under varying radiometric conditions," Journal of the Korea Academia-Industrial Cooperation Society, vol. 20, no. 7, pp. 127-132, 2019. https://doi.org/10.5762/KAIS.2019.20.7.127
  3. I.-C. Park, "Fast human detection algorithm for high-resolution CCTV camera," Journal of the Korea Academia-Industrial Cooperation Society, vol. 15, no. 8, pp. 5263-5268, Aug. 2014. https://doi.org/10.5762/KAIS.2014.15.8.5263
  4. N. Arora, M. Martolia, and A. Ashok, "A Comparative study of the image registration process on the multimodal medical images," Asia-pacific Journal of Convergent Research Interchange, vol.3, no.1, pp. 1-17, Mar. 2017. https://doi.org/10.21742/apjcri.2017.03.01
  5. J.-H. Cha, Y.-W. Woo, and I. Lee, "An effective method for generating images using genetic algorithm," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 8, pp. 896-902, Sep. 2019. https://doi.org/10.6109/JKIICE.2019.23.8.896
  6. T.-S. Chung, S.-H. Cha, "A Survey of Haptic Technology in Imaging," in Proceeding of the Fall Conference of the Korea Academia-Industrial Cooperation Society, vol. 1, pp. 54-57, Dec. 2011.
  7. K.-C. Park, C.-S. Bae "Hand movement tracking and recognizing hand gestures," Journal of the Korea AcademiaIndustrial Cooperation Society, vol. 14, no. 8, pp. 3971-3975, Aug. 2013. https://doi.org/10.5762/KAIS.2013.14.8.3971
  8. X. Suau, M. Alcoverro, A. L. Mendez, J. R. Hidalgo, and J. R. Casas, "Real-time fingertip localization conditioned on hand gesture classification," Image and Vision Computing, vol. 32, no. 8, pp. 522-532, Aug. 2014. https://doi.org/10.1016/j.imavis.2014.04.015
  9. Q. Fan, X. Shen, Y. Hu, and C. Yu, "Simple very deep convolutional network for robust hand pose regression from a single depth image," Pattern Recognition Letters, vol. 119, pp. 205-213, Mar. 2019. https://doi.org/10.1016/j.patrec.2017.10.019
  10. B. Fang, F. Sun, H. Liu, and C. Liu, "3D human gesture capturing and recognition by the IMMU-based data glove," Neurocomputing, vol. 277, pp. 198-207, Feb. 2018. https://doi.org/10.1016/j.neucom.2017.02.101
  11. Q. D. Smedt, H. Wannous, and J.-P. Vandeborre, "Skeleton-based dynamic hand gesture recognition," in Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, USA, Jun. 2016.
  12. S. Sridhar, F. Mueller, A. Oulasvirta, and C. Theobalt, "Fast and robust hand tracking using detection-guided optimization," in Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 3213-3221, Jun. 2015.
  13. Q. D. Smedt, H. Wannous, and J.-P. Vandeborre, "Heterogeneous hand gesture recognition using 3D dynamic skeletal data," Computer Vision and Image Understanding, vol. 181, pp. 60-72, Apr. 2019. https://doi.org/10.1016/j.cviu.2019.01.008
  14. M. Oberweger, P. Wohlhart, and V. Lepetit, "Hands deep in deep learning for hand pose estimation," in Proceedings of the Computer Vision Winter Workshop, Seggau, Austria, Feb. 2015.