• 제목/요약/키워드: hammer design

검색결과 107건 처리시간 0.026초

MFC 작동기가 부착된 박판 실린더 쉘의 동적 모델링과 능동진동제어 (Dynamic Modeling and Active Vibration Control of Cylindrical Shell equipped with MFC Actuators)

  • 곽문규;정문산;배병찬;이명일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1229-1234
    • /
    • 2006
  • This paper is concerned with the dynamic modeling and controller design for a cylindrical shell equipped with MFC actuators. The dynamic model was derived by using Ravleigh-Ritz method based on Donnel-Mushtari shell theory. The boundary conditions at both ends were assumed to be shear diaphragm. To verify the theoretical results, a cylindrical shell structure made of aluminum was built ana tested by using impact hammer. Experimental results show that there are little discrepancies compared to theoretical results because of the boundary conditions at both ends. The MFC actuators were glued to the cylindrical shell in longitudinal and circumferential directions. The PPF controller were designed for lowest two modes and applied to the MFC actuators. The experimental results show that vibrations can be successfully suppressed.

  • PDF

실무에서의 N척 적용 및 문제점 (연약한 해성점토층의 경우) (The Problem of using N-value to assume the displacement depth)

  • 이충호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.293-298
    • /
    • 2001
  • N-value is usually used to assume the displacement depth of embankment on the soft marine clay. But N-value of the soft marine clay tend to underestimate unlike overestimating of general cases. In general case, if the length of rod is more long then N-value is more large because it is under the influence of energy loss of hammer blow. So it is reasonable to correct N-value down. But in the case of soft marine clay, N-value must not be correct down. Especially to assume the displacement depth of embankment on the soft marine clay, it must be used laboratory test results or CPT, Vane Test than N-value. In this study, it is compared with two field cases that design displacement method of embankment.

  • PDF

슬래브 상부 몰탈층에 사용된 작은시편의 유효성 검토(중량충격음을 중심으로) (Small-size Specimen's Effectiveness That is Used to Mortar Layer of Slab (Heavy-weight Floor Impact Sound))

  • 정진연
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.184-191
    • /
    • 2009
  • This study examined small-size specimen's effectiveness that is used to evaluate floor impact sound performance. Floor impact sound level of small-size specimen is higher than full-size. This is due to excessive impact power of Bang machine. Impact hammer that has small impact power relatively can solve this problem. But, according to the size of specimen, mode shape and frequency that influence to structural borne sound is changed. Slab mode of full-size specimen was changed to frequency design of resilient materials. But in case of small-size specimen, there is no change of vibration mode by resilient materials change, Vibration mode of small-size specimen is the same. Therefore, it is not proper that use small-size specimen in floor impact sound estimation.

Aiding the operator during novel fault diagnosis

  • Yoon, Wan-C.;Hammer, John-M.
    • 대한인간공학회지
    • /
    • 제6권1호
    • /
    • pp.9-24
    • /
    • 1987
  • The design and philosophy are presented for an intelligent aid for a hyman operator who must diagnose a novel fault in a physical system. A novel fault is defined as one that the operator has not experienced in either real system operation or training. When the operator must diagnose a novel fault, deep reasoning about the behavior of the system components is required. To aid the human operator in this situation, four aiding approaches which provide useful information are proposed. The aiding information is generated by a qualitative, component-level model of the physical system. Both the aid and the human are able to reason causally about the system in a cooperative search for a diagnosis. The aiding features were designed to help the hyman's use of his/her mental model in predicting the normal system behavior, integrating the observations into the actual system behavior, or finding discrepancies between the two. The aid can also have direct access to the operator's hypotheses and run a hypothetical system model. The different aiding approaches will be evaluated by a series of experiments.

  • PDF

Impact-resistant design of RC slabs in nuclear power plant buildings

  • Li, Z.C.;Jia, P.C.;Jia, J.Y.;Wu, H.;Ma, L.L.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3745-3765
    • /
    • 2022
  • The concrete structures related to nuclear safety are threatened by accidental impact loadings, mainly including the low-velocity drop-weight impact (e.g., spent fuel cask and assembly, etc. with the velocity less than 20 m/s) and high-speed projectile impact (e.g., steel pipe, valve, turbine bucket, etc. with the velocity higher than 20 m/s), while the existing studies are still limited in the impact resistant design of nuclear power plant (NPP), especially the primary RC slab. This paper aims to propose the numerical simulation and theoretical approaches to assist the impact-resistant design of RC slab in NPP. Firstly, the continuous surface cap (CSC) model parameters for concrete with the compressive strength of 20-70 MPa are fully calibrated and verified, and the refined numerical simulation approach is proposed. Secondly, the two-degree freedom (TDOF) model with considering the mutual effect of flexural and shear resistance of RC slab are developed. Furthermore, based on the low-velocity drop hammer tests and high-speed soft/hard projectile impact tests on RC slabs, the adopted numerical simulation and TDOF model approaches are fully validated by the flexural and punching shear damage, deflection, and impact force time-histories of RC slabs. Finally, as for the two low-velocity impact scenarios, the design procedure of RC slab based on TDOF model is validated and recommended. Meanwhile, as for the four actual high-speed impact scenarios, the impact-resistant design specification in Chinese code NB/T 20012-2019 is evaluated, the over conservation of which is found, and the proposed numerical approach is recommended. The present work could beneficially guide the impact-resistant design and safety assessment of NPPs against the accidental impact loadings.

실측에 의한 표준관입시험 함마의 낙하속도 분석 (Evaluation of the Falling Velocity of SPT Hammer via Actual Measurement)

  • 이명환;이원제
    • 한국지반공학회지:지반
    • /
    • 제8권1호
    • /
    • pp.59-66
    • /
    • 1992
  • 표준관입시험 결과인 N값은 여러가지 요소들에 영향을 받으며 그 중 함마의 낙하에너지는 가장 큰 영향을 주는 것으로 알려져 있다. 에너지 수준이 상이한 상태에서 측정한 N값을 표준값을 기준으로 한 일반적인 해석에 적용할 경우에는 기초의 안전을 위협하거나 과잉설계를 유발할 수 있다. 본 연구에서는 SPT 함마의 낙하속도를 측정 함으로써 함마의 낙하에너 지를 간접적으로 계산하였다. 분석 결과 우리나라의 N값은 국제적 인 표준 값으로 인정되는 Nu과는 차이가 있는 것으로 나타나 해석 또는 설계시 필수적으로 고려되어야 할 것으로 판단된다.

  • PDF

적층 직물 구조에 따른 탄소강화플라스틱 소재 동적 특성 분석 (Dynamic Analysis of Carbon-fiber-reinforced Plastic for Different Multi-layered Fabric Structure)

  • 김찬중
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.375-382
    • /
    • 2016
  • The mechanical property of a carbon-fiber-reinforced plastic (CFRP) is subjected to two elements, carbon fiber and polymer resin, in a first step and the selection of multi-layered structure is second one. Many combination of fabric layers, i.e. plainweave, twillweave, can be derived for candidates of test specimen used for a basic mechanical components so that a reliable identification of dynamic nature of possible multi-layered structures are essential during the development of CFRP based component system. In this paper, three kinds of multi-layered structure specimens were prepared and the dynamic characteristics of service specimens were conducted through classical modal test process with impact hammer. In addition, the design sensitivity analysis based on transmissibility function was applied for the measured response data so that the response sensitivity for each resonance frequency were compared for three CFRP test specimens. Finally, the evaluation of CFRP specimen over different multi-layered fabric structures are commented from the experimental consequences.

단일 크랙을 갖는 외팔보의 진동특성 (Vibration Characteristics of Cantilever Beam with a Crack)

  • 김종도;조지윤;윤문철
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.223-229
    • /
    • 2014
  • In this paper, the natural frequency and damping ratio are analyzed with the acceleration signal of an Euler-Bernoulli beam using the impact hammer test. The results are presented according to crack depth and position using the recursive least squares method. The results are compared and investigated with FEM analysis of CATIA. Both methods agree well with each other regarding the natural mode characteristics. The captured acceleration can be used for the calculation of the natural frequency and damping ratio using time series methods that are based on the measured acceleration. Using these data, a recursive time series model with the acceleration signal was configured and the behaviors of the natural frequency and damping ratio were investigated and analyzed. Finally, the results can be used for the prediction of crack position and depth under different crack conditions for an Euler-Bernoulli beam.

상수관망에서 서지 릴리프밸브의 최적 설계 방법론 (Methodology for optimum design of surge relief valve in water distribution system)

  • 김현준;허지성;김건지;백다원;김상현
    • 상하수도학회지
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2017
  • Surge pressure is created by rapid change of flow rate due to operation of hydraulic component or accident of pipeline. Proper control of surge pressure in distribution system is important because it can damage pipeline and may have the potential to degrade water quality by pipe leakage due to surge pressure. Surge relief valve(SRV) is one of the most widely used devices and it is important to determine proper parameters for SRV's installation and operation. In this research, determining optimum parameters affecting performance of the SRV were investigated. We proposed the methodology for finding combination of parameters for best performance of the SRV. Therefore, the objective function for evaluate fitness of candidate parameters and surge pressure simulation software was developed to validate proposed parameters for SRV. The developed software was integrated into genetic algorithm(GA) to find best combination of parameters.

서울 지하철(地下鐵) 부지일대(敷地一帶) 암석(岩石)의 암석학적(岩石學的) 및 암석역학적(岩石力學的) 기준설정(基準設定)을 위(爲)한 연구(硏究) (The Petrological and Geomechanical Studies of Rock Masses in the Site Area of the 3rd and 4th Seoul Subway Lines for an Engineering Classification of Rock Masses)

  • 김옥준;이대성;정봉일
    • 자원환경지질
    • /
    • 제17권1호
    • /
    • pp.57-78
    • /
    • 1984
  • The object of this study is to offer the standarized data for the design and calculating engineering cost of the rock excavation an the construction of the 3rd and 4th Seoul Subway lines From Jnauary to March in 1983, this study was carried out by the both methods of the field and laboratary studies. In the field, the geological survey in the entire area of Seoul City and sites on the subway lines were carried out and also a site measure of uniaxial compressional strength of rock masses by using Schmidt hammer was done. The labartory studies were carsied out by a study of preuions surveyes, microscopic studies of the mineral composition and degree of weathering of rocks, and measure of uniaxial compressional strengths Finally an engineering classification of each rock masses of South Africa council for Scientific and Industrial Research, CSIR, after Bieniawski, 1974. was done. In this method of classification 6 parameters such as strength of intact rock material, rock quality designation, spacing of fractures, condition of fractures, groundwater conditions, and the effect of fracture strike and dip orientation in tunnelling were used to evaluate rating of each rock mass.

  • PDF