• Title/Summary/Keyword: hammer

Search Result 734, Processing Time 0.025 seconds

Estimation of impact characteristics of RC slabs under sudden loading

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.479-486
    • /
    • 2021
  • Reinforced concrete (RC) slabs are exposed to several static and dynamic effects during their period of service. Accordingly, there are many studies focused on the behavior of RC slabs under these effects in the literature. However, impact loading which can be more effective than other loads is not considered in the design phase of RC slabs. This study aims to investigate the dynamic behavior of two-way RC slabs under sudden impact loading. For this purpose, 3 different simply supported slab specimens are manufactured. These specimens are tested under impact loading by using the drop test setup and necessary measurement devices such as accelerometers, dynamic load cell, LVDT and data-logger. Mass and drop height of the hammer are taken constant during experimental study. It is seen that rigidity of the specimens effect experimental results. While acceleration values increase, displacement values decrease as the sizes of the specimens have bigger values. In the numerical part of the study, artificial neural networks (ANN) analysis is utilized. ANN analysis is used to model different physical dynamic processes depending upon the experimental variables. Maximum acceleration and displacement values are predicted by ANN analysis. Experimental and numerical values are compared and it is found out that proposed ANN model has yielded consistent results in the estimation of experimental values of the test specimens.

Analysis of Row Hammer Based on Interfacial Trap of BCAT Structure in DRAM (계면 트랩에 기반한 BCAT 구조 DRAM의 로우 해머 분석)

  • Chang Young Lim;Yeon Seok Kim;Min-Woo Kwon
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.220-224
    • /
    • 2023
  • Row hammering is a phenomenon in which bit flips occur in adjacent rows when accessing a particular row continuously, causing data damage, security problems, and poor computing performance. This paper analyzes the cause and response method of row hammering through TCAD simulation in 2ynm DRAM. In the experiment, the row hammering is reproduced while changing the parameters of the trap and the device structure, and the trap density, temperature. It analyzes the relationship with Active Wisdom, etc. As a result, it was confirmed that changes in trap parameters and device structures directly affect ΔVcap/pulse. This enables a fundamental understanding of low hammering and finding countermeasures, and can contribute to improving the stability and security of DRAM.

Effectiveness of bond strength between normal concrete as substrate and latex-modified sand concrete reinforced with sisal fibers as a repair material

  • Oday Z. Jaradat;Karima Gadri;Bassam A. Tayeh;Ahmed M. Maglad;Abdelhamid Guettala
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.431-444
    • /
    • 2023
  • This study investigated the use of latex-modified sand concrete reinforced with sisal fibers (LMSC) as a repair material. Notably, no prior research has explored the application of LMSC for this purpose. This paper examines the interface bond strength and the type of failure between LMSC as a repair material and the normal concrete (NC) substrate utilising four different surfaces: without surface preparation as a reference (SR), hand hammer (HA), sandblasted (SB), and grooved (GR). The bond strength was measured by bi-surface shear, splitting tensile, and pull-off strength tests at 7, 28, and 90 days. Scanning electron microscopy analysis was also performed to study the microstructure of the interface between the normal concrete substrate and the latex-modified sand concrete reinforced with sisal fibers. The results of this study indicate that LMSC has bonding strength with NC, especially for HR and SB surfaces with high roughness. Therefore, substrate NC surface roughness is essential in increasing the bonding strength and adhesion. Eventually, The LMSC has the potential to repair and rehabilitate concrete structures.

Los Angeles Abrasion Test for Estimating Engineering Index on the Sedimentary Rocks of Kyeongsang Basin (퇴적암의 공학지수를 추정하기 위한 L. A. 마모율 시험)

  • Min, Tuk-Ki;Moon, Jong-Kyu;Lee, Sang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.15-26
    • /
    • 2007
  • Los Angeles abrasion loss test has usally been applied to the quarry for the purpose of aggregate hardness estimation. 324 blocks from 25 sites of Kyeongsang basin samples of sedimentary rock were examined and tested in laboratary. This paper found that L. A. abrasion loss test is a good method to estimate engineering index such as uniaxial compressive strength, elastic modulus, indirect tensile strength, point load strength index, Schmidt hammer rebound value of sedimentary rocks with high correlation factor. Engineers will prefer L. A. abrasion loss test to the other one for design and construction as this method is quick and easy.

Combining different forms of statistical energy analysis to predict vibrations in a steel box girder comprising periodic stiffening ribs

  • Luo, Hao;Cao, Zhiyang;Zhang, Xun;Li, Cong;Kong, Derui
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.119-131
    • /
    • 2022
  • Due to the complexity of the structure and the limits of classical SEA, a combined SEA approach is employed, with angle-dependent SEA in the low- and mid-frequency ranges and advanced SEA (ASEA) considering indirect coupling in the high-frequency range. As an important component of the steel box girder, the dynamic response of an L-junction periodic ribbed plate is calculated first by the combined SEA and validated by the impact hammer test and finite element method (FEM). Results show that the indirect coupling due to the periodicity of stiffened plate is significant at high frequencies and may cause the error to reach 38.4 dB. Hence, the incident bending wave angle cannot be ignored in comparison to classical SEA. The combined SEA is then extended to investigate the vibration properties of the steel box girder. The bending wave transmission study is likewise carried out to gain further physical insight into indirect coupling. By comparison with FEM and classical SEA, this approach yields good accuracy for calculating the dynamic responses of the steel box girder made of periodic ribbed plates in a wide frequency range. Furthermore, the influences of some important parameters are discussed, and suggestions for vibration and noise control are provided.

A Study on the Strength Prediction of Crushed Sand Concrete by Ultra-sonic Velocity Method (초음파속도법에 의한 부순모래 콘크리트의 강도 추정에 관한 연구)

  • Kim, Myung-Sik;Baek, Dong-Il;Youm, Chi-Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.71-78
    • /
    • 2007
  • Schmidt hammer and ultra-sonic method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various of equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site. In this study, a strength test was carried out destructive test by means of core sampling and traditional test. The experimental parameter were concrete age, curing condition, and strength level.

Estimation of Dynamic Parameters and Concrete Strength of a Structural Member by Impact Hammer Testing (임팩트해머 실험에 의한 부재의 동적파라미터 및 콘크리트 강도 추정)

  • Sehee Kim;Junghyun Kyung;Heechang Eun
    • Land and Housing Review
    • /
    • v.15 no.3
    • /
    • pp.153-164
    • /
    • 2024
  • Structural health monitoring involves performance evaluation based on measurements for maintenance purposes. By back-calculating measured Frequency Response Function (FRF) data, the concept of effective mass was introduced and applied to the performance evaluation of structural members. An identification method was proposed that uses participation factors to estimate the dynamic parameters and the strength of concrete of structural members. The appropriateness of these methods for identifying dynamic parameters and concrete strength of structural members was validated through experimental results, proving their utility in non-destructive testing for concrete strength.

Study on forming Process of Piston Crown Using Near Net Shaping Technology (재료이용율 향상을 위한 피스톤 크라운 성형공정 연구)

  • Choi, H.J.;Choi, S.;Yoon, D.J.;Jung, H.S.;Choi, I.J.;Baek, D.K.;Choi, S.K.;Park, Y.B.;Lim, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.197-198
    • /
    • 2008
  • The forging process produces complicated and designed components in a die at high productivity for mass production and minimizes the machining amount for favorable material utilization; the forging products used at highly stressed sections are well accepted at a wide range of industry such as automobile, aerospace, electric appliance and et cetera. Accordingly, recent R&D activities have been emphasized on improvement of forging die-life and near net shaping technology for cost effectiveness and better performance. Usually closing and consolidation of internal void defects in a ingot is a vital matter when utilized as large forged products. It is important to develop cogging process for improvement of internal soundness without a void defect and cost reduction by solid forging alone with limited press capacity. For experiments of cogging process, hydraulic press with a capacity of 800 ton was used together with a small manipulator which was made for rotation and overlapping of a billet. Size of a void was categorized into two types; ${\phi}$ 6.0 mm and ${\phi}$ 9.0 mm to investigate the change of closing and consolidation of void defects existed in the large ingot during the cogging process. In addition for forming experiment of piston grown air drop hammer with a capacity of 16 ton was used. The experiment with piston crown was carried out to show the formability and void closing status. In this paper systematic configuration for closing process of void defects were expressed based on this experiment results in the cogging process. Also forging defects through forming process for piston crown was improved using the experiment results and FE analysis. Consequently this paper deals with the effect of radial parameters in cogging process on a void closure far large forged products and formability of piston crown.

  • PDF

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

A Study of Interpolation Methods for the Water Hammer Analysis using the Method of Characteristics (특성선 방법을 이용한 관망 수격현상 해석의 보간방법연구)

  • Jung, Bong Seog;Kim, Chu In;Kim, Sang Hyun;Park, Nam Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.363-373
    • /
    • 2000
  • It is necessary to employ the interpolation technique to resolve problems, which are associated with the characteristic locus in time-distance space, in the unsteady analysis of pipe flow. Various interpolation methods such as linear timeline interpolation, linear spaceline interpolation, wave speed adjustment, cubic spaceline interpolation and cubic timeline interpolation have been suggested and tested to investigate the interpolation error. Performance of various interpolation techniques was evaluated both a single pipeline and a complex one. The range of error was calculated as the courant number varied between 0 and 1 in a single pipeline. Reorganization of computational element and proper selection of interpolation method are found to be prerequisites for the effective computation of unsteady analysis.

  • PDF