• Title/Summary/Keyword: halide

Search Result 444, Processing Time 0.033 seconds

Palladium Catalyzed Carbonylative Vinylation of Aryl Halides with Olefins and Carbon Monoxide

  • Kim, Jin-Il;Ryu, Cheol-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.246-250
    • /
    • 1987
  • The reaction of aryl iodides or bromides with olefins in the presence of 1 mol % of $PdCl_2(PPh_3)_2$ and 3 equiv. of $n-Bu_3N\; at\; 100^{\circ}C$ in carbon monoxide atmosphere gave the corresponding aryl vinyl ketones in good yields with small amount of vinylated 1-aryl olefins. But, when the reaction was proceeded under the 10 atm of carbon monoxide, aryl vinyl ${\alpha}$-diketones and aryl vinyl ketones were obtained in moderate to good yields. The reaction was tolerant of a wide variety of functional groups on either the aryl halides or olefin compounds. Reactivity of aryl halide decrease in the order; aryl iodide > aryl bromide ${\gg}$aryl chloride. In general, the reaction proceeded well and gave good yields of aryl vinyl ketones and aryl vinyl ${\alpha}$-diketones when reactants are substituted with electron withdrawing groups.

Synthesis and Reaction of Biheterocyclic Thiazolo[3,2-a]pyrimidinium-betaines

  • Yoo, Kyung-Ho;Park ,Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.5
    • /
    • pp.272-276
    • /
    • 1985
  • Various new kinds of biheterocyclic betaines were prepared by the reaction of 3-substituted-6,7-dihydro-5H-thiazolo[3,2-a]pyrimidine with electrophiles such as isothioyanates, isocyanates in aprotic solvents, respectively. The biheterocyclic betaines containing methyl group at 3-position of thiazole ring were obtained particularly in good yields at room temperature. These betaines were also reacted with alkyl halide to give quarternary ammonium salts. It was found that these betaines are dissociated in polar organic solvents depending on temperature. And new biheterocyclic compounds via ring transformation were prepared by the reaction of 8-phenyl (thiocarbamoyl)-3-phenyl-6,7-dihydro-5H-thiazolo[3 ,2-a]pyrimidinium-betaine with ${\alpha}$-halo kester ${\alpha}-halo$ ester and ${\gamma}-halo$ keto ester.

A Calix[4]pyrrole Bearing a Quaternary Ammonium Group: A Fluoride-Selective Anion Receptor

  • Oh, Ju Hyun;Lee, Joon Hwa;Kim, Sung Kuk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.4
    • /
    • pp.45-50
    • /
    • 2021
  • A calix[4]pyrrole (1) bearing a quaternary ammonium pendant via its meso phenoxy linker has been synthesized as the bromide salt form. It was revealed by 1H NMR spectroscopic analyses performed in DMSO-d6 that receptor 1 binds F- with high affinity and selectivity over other halide anions. The binding of receptor 1•Br- with F- and Cltakes place by anion metathesis with the anions including F- and Cl-.

Defect Engineering of Metal Halide Perovskite Nanocrystals and Photovolatic Applciations (페로브스카이트 나노결정의 결점 엔지니어링 및 태양전지 응용 기술)

  • Jin, Haedam;Kim, Mi Kyong;Cha, Jeongbeom;Kim, Min
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.5
    • /
    • pp.30-46
    • /
    • 2021
  • 페로브스카이트 나노결정의 뛰어난 광전기적 특성과 표면 개질 용이성, 그리고 다양한 용액 공정 응용 가능성을 바탕으로 나노결정을 활용한 태양전지 응용 기술에 대한 연구가 폭넓게 진행되고 있다. 나노결정의 표면 및 결점 제어에 대한 화학적 이해와 공학적 제어 기술을 적용하여 다양한 광전소자의 효율을 향상시켜 왔으며, 최근 16.6% 광전효율의 페로브스카이트 나노결정 태양전지가 발표되었다. 나노결정을 태양전지에 활용하기 위해서는 광전특성 뿐만 아니라 연속적인 구동 안정성이 확보되어야 하며, 이를 위해서는 나노결정의 반응성이 높은 표면을 효율적으로 개질해야 한다. 이 총설에서는 페로브스카이트 나노결정의 표면 화학에 대한 기본 이해와 이를 제어하기 위한 리간드 치환 방법, 그리고 나노결정을 태양전지에 적용하기 위한 공학적 접근법에 대한 다양한 연구를 소개하고자 한다.

Perovskite Solar Cells through Application of Hole Transporting Layers based on Vacuum Thermal Evaporation (진공 열 증착 기반의 정공수송층 적용을 통한 페로브스카이트 태양전지)

  • Kim, Hye Seung;Song, Myoung Hoon
    • Current Photovoltaic Research
    • /
    • v.10 no.1
    • /
    • pp.23-27
    • /
    • 2022
  • In this study, we investigate organic-inorganic halide perovskite solar cells with a vacuum thermal evaporated hole transporting layer (NPB/MoO3-x). By replacing solution process based Spiro-MeOTAD with vacuum thermal evaporation based NPB/MoO3-x, a thin hole transporting layer was implemented. In addition, parasitic absorption that may occur during the doping process was eliminated by excluding solution process doping. In a solar cell with a thin vacuum thermal evaporated hole transporting layer, the short-circuit current density (Jsc) increased to 23.93 mA/cm2, resulting in the highest power converstion efficiency (PCE) at 18.76%. Considering these results, it is essential to control the thickness of hole transporting layer located at the top in solar cell configuration.

Analysis of the Correlation between Human Sensibility and Physical Property of luminous Sources -Focused on Response according to Character of Color Temperature by luminous Sources- (건축조명광원의 광학적 특성에 따른 인간의 감성반응 분석 -조명광원별 색온도 특성에 따른 반응을 중심으로-)

  • Lee, Jin-Sook;Oh, Do-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.9-16
    • /
    • 2005
  • The purpose of this research is to acquire emotional data on luminous source by measuring and evaluating human emotional response to the change of the optical feature of luminous environment Luminous sources used in actual architectural space were selected with the optical feature of luminous soured then to measure and analysis human emotional response on Luminous Source. As a result of that 1) In the result of performance measurement by the item of the clear vision of an optic function the fluorescent lamp of daylight indicated the most excellent Performance. 2) In the item of fatigue and stress, the metal halide lamp and mercury lamp showed the most 3) In $\ulcorner$ suitable in light$\lrcorner$, $\ulcorner$a similar with daylight$\lrcorner$ adjective of the amenity item the fluorescent lamp of daylight which color temperature was high turned up to be high also, in $\ulcorner$brilliant$\lrcorner$, adjective, the metal halide lamp and mercury lamp turned up to be low. 4) In the result of factor analysis, three factors $\ulcorner$activity$\lrcorner$, $\ulcorner$potency$\lrcorner$, $\ulcorner$evaluation$\lrcorner$ were abstracted and $\ulcorner$activity$\lrcorner$ factor has the most influential on evaluating the mood of interior space. 5) For the affection in the mood evaluation by each luminous sources, $\ulcorner$activity$\lrcorner$ factor was the most influential by metal halide lamp and fluorescent lamp of daylight, $\ulcorner$potency$\lrcorner$ factor was most influential by kind of incandescent lamp, $\ulcorner$evaluation$\lrcorner$ factor was most influential by fluorescent lamp of low color temperature.

Characterization of epitaxial layers on beta-gallium oxide single crystals grown by EFG method as a function of different crystal faces and off-angle (EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면, off-angle에 따른 epitaxial layer의 특성 분석)

  • Min-Ji Chae;Sun-Yeong Seo;Hui-Yeon Jang;So-Min Shin;Dae-Uk Kim;Yun-Jin Kim;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Hae-Yong Lee;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.109-116
    • /
    • 2024
  • β-Ga2O3 is a representative ultra-wide bandgap (UWBG) semiconductor that has attracted much attention for power device applications due to its wide-bandgap of 4.9 eV and high-breakdown voltage of 8 MV/cm. In addition, because solution growth is possible, it has advantages such as fast growth rate and lower production cost compared to SiC and GaN [1-2]. In this study, we have successfully grown Si-doped 10 mm thick Si-doped β-Ga2O3 single crystals by the EFG (Edge-defined Film-fed Growth) method. The growth direction and growth principal plane were set to [010] / (010), respectively, and the growth speed was 7~20 mm/h. The as-grown β-Ga2O3 single crystal was cut into various crystal planes (001, 100, ${\bar{2}}01$) and off-angles (1o, 3o, 4o), and then surface processed. After processed, the homoepitaxial layer was grown on the epi-ready substrate using the HVPE (Halide vapor phase epitaxy) method. The processed samples and the epi-layer grown samples were analyzed by XRD, AFM, OM, and Etching to compare the surface properties according to the crystal plane and off-angle.

Performances and Electrical Properties of Vertically Aligned Nanorod Perovskite Solar Cell

  • Kwon, Hyeok-Chan;Kim, Areum;Lee, Hongseuk;Lee, Eunsong;Ma, Sunihl;Lee, Yung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.429-429
    • /
    • 2016
  • Organolead halide perovskite have attracted much attention over the past three years as the third generation photovoltaic due to simple fabrication process via solution process and their great photovoltaic properties. Many structures such as mesoporous scaffold, planar heterojunction or 1-D TiO2 or ZnO nanorod array structures have been studied to enhance performances. And the photovoltaic performances and carrier transport properties were studied depending on the cell structures and shape of perovskite film. For example, the perovskite cell based on TiO2/ZnO nanorod electron transport materials showed higher electron mobility than the mesoporous structured semiconductor layer due to 1-D direct pathway for electron transport. However, the reason for enhanced performance was not fully understood whether either the shape of perovskite or the structure of TiO2/ZnO nanorod scaffold play a dominant role. In this regard, for a clear understanding of the shape/structure of perovskite layer, we applied anodized aluminum oxide material which is good candidate as the inactive scaffold that does not influence the charge transport. We fabricated vertical one dimensional (1-D) nanostructured methylammonium lead mixed halide perovskite (CH3NH3PbI3-xClx) solar cell by infiltrating perovskite in the pore of anodized aluminum oxide (AAO). AAO template, one of the common nanostructured materials with one dimensional pore and controllable pore diameters, was successfully fabricated by anodizing and widening of the thermally evaporated Al film on the compact TiO2 layer. Using AAO as a scaffold for perovskite, we obtained 1-D shaped perovskite absorber, and over 15% photo conversion efficiency was obtained. I-V measurement, photoluminescence, impedance, and time-limited current collection were performed to determine vertically arrayed 1-D perovskite solar cells shaped in comparison with planar heterojunction and mesoporous alumina structured solar cells. Our findings lead to reveal the influence of the shape of perovskite layer on photoelectrical properties.

  • PDF

Analysis of Aliphatic Carboxylic Acids Using Ion-Exchange Chromatography: Application to Groundwater Affected by Landfill Leachates (이온-교환 크로마토그래피를 활용한 유기산 분석: 매립지 침출수의 영향을 받은 지하수에 대한 적용)

  • Cheon, Su-Hyun;Koh, Dong-Chan;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.55-64
    • /
    • 2007
  • An analytical method using ion-exchange chromatography was developed for simultaneous quantification of low-molecularweight organic acids ($C_1-C_6$ aliphatic carboxylic acids) and inorganic anions, and then applied to the assessment of ground water contaminated by leachates from a municipal solid waste landfill. Peak interferences of halide ions to organic acids were removed by pretreatment of water samples with Ag-containing cartridges. This method allowed accurate detection of low-molecular weight organic acids (i.e., formate, acetate, propionate, pyruvate, succinate, and oxalateas) low as 0.5 mg/L with a linear dynamic range up to 20 mg/L within 11 min run time along with typical inorganic anions. High level of pyruvate and low level of formate and acetate were detected in groundwater and landfill leachates using the analytical method. Pyruvate concentration in groundwater showed a significant correlation with concentrations of $Cl^-$ and $HCO_3^-$, and pyruvate levels decreased along the downgradient from the landfill, indicating the sources of pyruvate are landfill leachate.

Design and Fabrication of an Energy Saving LED-Fishing Lamp (에너지 절감형 LED 집어등의 설계 및 제작)

  • Choi, Sung-Kuk;Kim, Sun-Jae;Park, Dae-Won;Kil, Gyung-Suk;Choi, Chul-Young;Song, Sang-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.515-521
    • /
    • 2010
  • This paper dealt with the design and fabrication of an energy saving light emitting diode (LED) fishing lamp. Most fishes such as a squid, horse mackerel, mackerel, sardine and scabbard fish have characteristics for phototaxis and fishing lamps have promoted the fishery efficiency using their photo-reaction. In these days, metal halide lamp (MHL) as the fishing lamp, which consumes 1.5 kW and radiates harmful ultraviolet rays are mainly used. To develop the LED-fishing lamp, the penetration depth in sea water and the photo-reaction of a squid as light wavelength were studied. The experimental results showed the both characteristics were existed in blue color around 470 nm. Based on the results, we manufactured a 160 W and blue LED-fishing lamp which is consume about one-nine of 1.5 kW MHL. As energy saving effect, the use of LED-fishing lamp can reduce 128 kWh per an hour which is correspond to $CO_2$ of 86 kg for a 22ton-fishing boat equipped with 80-1.5 kW MHL. Now, the prototype LED fishing lampsare being evaluated on two fishing boats.