Acknowledgement
이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 작성되었음(NRF-2021R1C1C1012188).
References
- S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, 342, 341 (2013). https://doi.org/10.1126/science.1243982
- G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3, Science, 342, 344 (2013). https://doi.org/10.1126/science.1243167
- D. Yang, G. Zhang, R. Lai, Y. Cheng, Y. Lian, M. Rao, D. Huo, D. Lan, and B. Zhao, D. Di, Germanium-lead perovskite light-emitting diodes, Nat. Commun., 12, 4295 (2021). https://doi.org/10.1038/s41467-021-24616-5
- L. Li, S. Ye, J. Qu, F. Zhou, J. Song, and G. Shen, Recent Advances in Perovskite Photodetectors for Image Sensing, Small, 17, 2005606 (2021). https://doi.org/10.1002/smll.202005606
- J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells, Nano Lett., 13, 1764-1769 (2013). https://doi.org/10.1021/nl400349b
- M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells, J. Phys. Chem. Lett., 7, 167-172 (2016). https://doi.org/10.1021/acs.jpclett.5b02597
- R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit, H.-G. Boyen, M. F. Toney, and M. D. McGehee, Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics, J. Am. Chem. Soc., 139, 11117-11124 (2017). https://doi.org/10.1021/jacs.7b04981
- J. Lim, M. T. Horantner, N. Sakai, J. M. Ball, S. Mahesh, N. K. Noel, Y.-H. Lin, J. B. Patel, D. P. McMeekin, M. B. Johnston, B. Wenger, and H. J. Snaith, Elucidating the long-range charge carrier mobility in metal halide perovskite thin films, Energy Environ. Sci., 12, 169-176 (2019). https://doi.org/10.1039/C8EE03395A
- X. Gong, Z. Huang, R. Sabatini, C.-S. Tan, G. Bappi, G. Walters, A. Proppe, M. I. Saidaminov, O. Voznyy, S. O. Kelley, and E. H. Sargent, Contactless measurements of photocarrier transport properties in perovskite single crystals, Nat. Commun., 10, 1591 (2019). https://doi.org/10.1038/s41467-019-09538-7
- A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites, Nat. Phys., 11, 582-587 (2015). https://doi.org/10.1038/nphys3357
- A. Dey, J. Ye, A. De, E. Debroye, S. K. Ha, E. Bladt, A. S. Kshirsagar, Z. Wang, J. Yin, Y. Wang, L. N. Quan, F. Yan, M. Gao, X. Li, J. Shamsi, T. Debnath, M. Cao, M. A. Scheel, S. Kumar, J. A. Steele, M. Gerhard, L. Chouhan, K. Xu, X.-g. Wu, Y. Li, Y. Zhang, A. Dutta, C. Han, I. Vincon, A. L. Rogach, A. Nag, A. Samanta, B. A. Korgel, C.-J. Shih, D. R. Gamelin, D. H. Son, H. Zeng, H. Zhong, H. Sun, H. V. Demir, I. G. Scheblykin, I. Mora-Sero, J. K. Stolarczyk, J. Z. Zhang, J. Feldmann, J. Hofkens, J. M. Luther, J. Perez-Prieto, L. Li, L. Manna, M. I. Bodnarchuk, M. V. Kovalenko, M. B. J. Roeffaers, N. Pradhan, O. F. Mohammed, O. M. Bakr, P. Yang, P. Muller-Buschbaum, P. V. Kamat, Q. Bao, Q. Zhang, R. Krahne, R. E. Galian, S. D. Stranks, S. Bals, V. Biju, W. A. Tisdale, Y. Yan, R. L. Z. Hoye, and L. Polavarapu, State of the Art and Prospects for Halide Perovskite Nanocrystals, ACS Nano, 15, 10775-10981 (2021). https://doi.org/10.1021/acsnano.0c08903
- P. Lu, M. Lu, H. Wang, N. Sui, Z. Shi, W. W. Yu, and Y. Zhang, Metal halide perovskite nanocrystals and their applications in optoelectronic devices, InfoMat, 1, 430-459 (2019). https://doi.org/10.1002/inf2.12031
- K. Xing, S. Cao, X. Yuan, R. Zeng, H. Li, B. Zou, and J. Zhao, Thermal and photo stability of all inorganic lead halide perovskite nanocrystals, Phys. Chem. Chem. Phys., 23, 17113-17128 (2021). https://doi.org/10.1039/D1CP02119B
- J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama, Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells, Acc. Chem. Res., 49, 554-561 (2016). https://doi.org/10.1021/acs.accounts.5b00452
- A. Mahapatra, D. Prochowicz, M. M. Tavakoli, S. Trivedi, P. Kumar, and P. Yadav, A review of aspects of additive engineering in perovskite solar cells, J. Mater. Chem. A, 8, 27-54 (2020). https://doi.org/10.1039/c9ta07657c
- D. Niesner, Surface electronic structure and dynamics of lead halide perovskites, APL Materials, 8, 090704 (2020).
- J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama, Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar Cells, J. Phys. Chem. Lett., 5, 2903-2909 (2014). https://doi.org/10.1021/jz501510v
- Y. Zhou, I. Poli, D. Meggiolaro, F. De Angelis, and A. Petrozza, Defect activity in metal halide perovskites with wide and narrow bandgap, Nat. Rev. Mater., (2021).
- J. Kim, C.-H. Chung, and K.-H. Hong, Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites, Phys. Chem. Chem. Phys., 18, 27143-27147 (2016). https://doi.org/10.1039/c6cp02886a
- L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, Nano Lett., 15, 3692-3696 (2015). https://doi.org/10.1021/nl5048779
- Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang, and A. P. Alivisatos, Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies, J. Am. Chem. Soc., 137, 16008-16011 (2015). https://doi.org/10.1021/jacs.5b11199
- D. Zhang, Y. Yang, Y. Bekenstein, Y. Yu, N. A. Gibson, A. B. Wong, S. W. Eaton, N. Kornienko, Q. Kong, M. Lai, A. P. Alivisatos, S. R. Leone, and P. Yang, Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires through Anion-Exchange Reactions, J. Am. Chem. Soc., 138, 7236-7239 (2016). https://doi.org/10.1021/jacs.6b03134
- J. Xue, R. Wang, and Y. Yang, The surface of halide perovskites from nano to bulk, Nat. Rev. Mater., 5, 809-827 (2020). https://doi.org/10.1038/s41578-020-0221-1
- D. Yang, X. Li, W. Zhou, S. Zhang, C. Meng, Y. Wu, Y. Wang, and H. Zeng, CsPbBr3 Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification, Adv. Mater., 31, 1900767 (2019). https://doi.org/10.1002/adma.201900767
- D. P. Nenon, K. Pressler, J. Kang, B. A. Koscher, J. H. Olshansky, W. T. Osowiecki, M. A. Koc, L.-W. Wang, and A. P. Alivisatos, Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases, J. Am. Chem. Soc., 140, 17760-17772 (2018). https://doi.org/10.1021/jacs.8b11035
- X. Zheng, S. Yuan, J. Liu, J. Yin, F. Yuan, W.-S. Shen, K. Yao, M. Wei, C. Zhou, K. Song, B.-B. Zhang, Y. Lin, M. N. Hedhili, N. Wehbe, Y. Han, H.-T. Sun, Z.-H. Lu, T. D. Anthopoulos, O. F. Mohammed, E. H. Sargent, L.-S. Liao, and O. M. Bakr, Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes, ACS Energy Lett., 5, 793-798 (2020). https://doi.org/10.1021/acsenergylett.0c00057
- S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, and F. Hao, Lewis acid/base approach for efficacious defect passivation in perovskite solar cells, J. Mater. Chem. A, 8, 12201-12225 (2020). https://doi.org/10.1039/d0ta03957h
- M. Abdel-Shakour, T. H. Chowdhury, K. Matsuishi, Y. Moritomo, and A. Islam, Chemical passivation of the under coordinated Pb2+ defects in inverted planar perovskite solar cells via β-diketone Lewis base additives, Photochem. Photobiol. Sci., 20, 357-367 (2021). https://doi.org/10.1007/s43630-021-00023-z
- S. R. Smock, T. J. Williams, and R. L. Brutchey, Quantifying the Thermodynamics of Ligand Binding to CsPbBr3 Quantum Dots, Angew. Chem. Int. Ed., 57, 11711-11715 (2018). https://doi.org/10.1002/anie.201806916
- S. ten Brinck, and I. Infante, Surface Termination, Morphology, and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals, ACS Energy Lett., 1, 1266-1272 (2016). https://doi.org/10.1021/acsenergylett.6b00595
- V. K. Ravi, P. K. Santra, N. Joshi, J. Chugh, S. K. Singh, H. Rensmo, P. Ghosh, and A. Nag, Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes, J. Phys. Chem. Lett., 8, 4988-4994 (2017). https://doi.org/10.1021/acs.jpclett.7b02192
- J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko, and Z. Hens, Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals, ACS Nano, 10, 2071-2081 (2016). https://doi.org/10.1021/acsnano.5b06295
- G. Almeida, I. Infante, and L. Manna, Resurfacing halide perovskite nanocrystals, Science, 364, 833 (2019). https://doi.org/10.1126/science.aax5825
- Y. Liu, Z. Wang, S. Liang, Z. Li, M. Zhang, H. Li, and Z. Lin, Polar Organic Solvent-Tolerant Perovskite Nanocrystals Permanently Ligated with Polymer Hairs via Star-like Molecular Bottlebrush Trilobe Nanoreactors, Nano Lett., 19, 9019-9028 (2019). https://doi.org/10.1021/acs.nanolett.9b04047
- Z. Liu, Y. Bekenstein, X. Ye, S.C. Nguyen, J. Swabeck, D. Zhang, S.-T. Lee, P. Yang, W. Ma, and A.P. Alivisatos, Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs4PbBr6 Nanocrystals, J. Am. Chem. Soc., 139, 5309-5312 (2017). https://doi.org/10.1021/jacs.7b01409
- F. Palazon, G. Almeida, Q. A. Akkerman, L. De Trizio, Z. Dang, M. Prato, and L. Manna, Changing the Dimensionality of Cesium Lead Bromide Nanocrystals by Reversible Postsynthesis Transformations with Amines, Chem. Mater., 29, 4167-4171 (2017). https://doi.org/10.1021/acs.chemmater.7b00895
- M. L. H. Green, A new approach to the formal classification of covalent compounds of the elements, J. Organomet. Chem., 500, 127-148 (1995). https://doi.org/10.1016/0022-328X(95)00508-N
- J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han, and H. Zeng, 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control, Adv. Mater., 29, 1603885 (2017). https://doi.org/10.1002/adma.201603885
- Y. Tan, Y. Zou, L. Wu, Q. Huang, D. Yang, M. Chen, M. Ban, C. Wu, T. Wu, S. Bai, T. Song, Q. Zhang, and B. Sun, Highly Luminescent and Stable Perovskite Nanocrystals with Octylphosphonic Acid as a Ligand for Efficient Light-Emitting Diodes, ACS Appl. Mater. Interfaces, 10, 3784-3792 (2018). https://doi.org/10.1021/acsami.7b17166
- F. Krieg, S. T. Ochsenbein, S. Yakunin, S. ten Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C.-J. Shih, I. Infante, and M.V. Kovalenko, Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability, ACS Energy Lett., 3, 641-646 (2018). https://doi.org/10.1021/acsenergylett.8b00035
- M. Imran, P. Ijaz, L. Goldoni, D. Maggioni, U. Petralanda, M. Prato, G. Almeida, I. Infante, and L. Manna, Simultaneous Cationic and Anionic Ligand Exchange For Colloidally Stable CsPbBr3 Nanocrystals, ACS Energy Lett., 4, 819-824 (2019). https://doi.org/10.1021/acsenergylett.9b00140
- S. Park, H. Cho, W. Choi, H. Zou, D. Y. Jeon, Correlation of near-unity quantum yields with photogenerated excitons in X-type ligand passivated CsPbBr3 perovskite quantum dots, Nanoscale Adv., 1, 2828-2834 (2019). https://doi.org/10.1039/c9na00292h
- J. Pan, Y. Shang, J. Yin, M. De Bastiani, W. Peng, I. Dursun, L. Sinatra, A. M. El-Zohry, M. N. Hedhili, A.-H. Emwas, O. F. Mohammed, Z. Ning, and O. M. Bakr, Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes, J. Am. Chem. Soc., 140, 562-565 (2018). https://doi.org/10.1021/jacs.7b10647
- J. Dai, J. Xi, Y. Zu, L. Li, J. Xu, Y. Shi, X. Liu, Q. Fan, J. Zhang, S. Wang, F. Yuan, H. Dong, B. Jiao, X. Hou, and Z. Wu, Surface mediated ligands addressing bottleneck of room-temperature synthesized inorganic perovskite nanocrystals toward efficient light-emitting diodes, Nano Energy, 70, 104467 (2020). https://doi.org/10.1016/j.nanoen.2020.104467
- C. Wang, A. S. R. Chesman, and J. J. Jasieniak, Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid, Chem. Commun., 53, 232-235 (2017). https://doi.org/10.1039/C6CC08282C
- F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N. Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, K. Yoshino, S. Dai, and Q. Shen, Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield, ACS Nano, 11, 10373-10383 (2017). https://doi.org/10.1021/acsnano.7b05442
- B. Luo, Y.-C. Pu, S. A. Lindley, Y. Yang, L. Lu, Y. Li, X. Li, and J. Z. Zhang, Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability, Angew. Chem. Int. Ed., 55, 8864-8868 (2016). https://doi.org/10.1002/anie.201602236
- M. Kazes, T. Udayabhaskararao, S. Dey, and D. Oron, Effect of Surface Ligands in Perovskite Nanocrystals: Extending in and Reaching out, Acc. Chem. Res., 54, 1409-1418 (2021). https://doi.org/10.1021/acs.accounts.0c00712
- K. Hills-Kimball, H. Yang, T. Cai, J. Wang, and O. Chen, Recent Advances in Ligand Design and Engineering in Lead Halide Perovskite Nanocrystals, Adv. Sci., 8, 2100214 (2021). https://doi.org/10.1002/advs.202100214
- L. M. Wheeler, E. M. Sanehira, A. R. Marshall, P. Schulz, M. Suri, N.C. Anderson, J. A. Christians, D. Nordlund, D. Sokaras, T. Kroll, S. P. Harvey, J. J. Berry, L. Y. Lin, and J. M. Luther, Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics, J. Am. Chem. Soc., 140, 10504-10513 (2018). https://doi.org/10.1021/jacs.8b04984
- J. Yuan, A. Hazarika, Q. Zhao, X. Ling, T. Moot, W. Ma, and J. M. Luther, Metal Halide Perovskites in Quantum Dot Solar Cells: Progress and Prospects, Joule, 4, 1160-1185 (2020). https://doi.org/10.1016/j.joule.2020.04.006
- M. Hao, Y. Bai, S. Zeiske, L. Ren, J. Liu, Y. Yuan, N. Zarrabi, N. Cheng, M. Ghasemi, P. Chen, M. Lyu, D. He, J.-H. Yun, Y. Du, Y. Wang, S. Ding, A. Armin, P. Meredith, G. Liu, H.-M. Cheng, and L. Wang, Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation, Nat. Energy, 5, 79-88 (2020). https://doi.org/10.1038/s41560-019-0535-7
- Y. Wang, J. Yuan, X. Zhang, X. Ling, B. W. Larson, Q. Zhao, Y. Yang, Y. Shi, J. M. Luther, and W. Ma, Surface Ligand Management Aided by a Secondary Amine Enables Increased Synthesis Yield of CsPbI3 Perovskite Quantum Dots and High Photovoltaic Performance, Adv. Mater., 32, 2000449 (2020). https://doi.org/10.1002/adma.202000449
- K. Chen, Q. Zhong, W. Chen, B. Sang, Y. Wang, T. Yang, Y. Liu, Y. Zhang, and H. Zhang, Short-Chain Ligand-Passivated Stable α-CsPbI3 Quantum Dot for All-Inorganic Perovskite Solar Cells, Adv. Funct. Mater., 29, 1900991 (2019). https://doi.org/10.1002/adfm.201900991
- D. Jia, J. Chen, M. Yu, J. Liu, E. M. J. Johansson, A. Hagfeldt, and X. Zhang, Dual Passivation of CsPbI3 Perovskite Nanocrystals with Amino Acid Ligands for Efficient Quantum Dot Solar Cells, Small, 16, 2001772 (2020). https://doi.org/10.1002/smll.202001772
- K. Ji, J. Yuan, F. Li, Y. Shi, X. Ling, X. Zhang, Y. Zhang, H. Lu, J. Yuan, and W. Ma, High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer, J. Mater. Chem. A, 8, 8104-8112 (2020). https://doi.org/10.1039/d0ta02743j
- J. Xue, R. Wang, L. Chen, S. Nuryyeva, T.-H. Han, T. Huang, S. Tan, J. Zhu, M. Wang, Z.-K. Wang, C. Zhang, J.-W. Lee, and Y. Yang, A Small-Molecule "Charge Driver" enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13%, Adv. Mater., 31, 1900111 (2019). https://doi.org/10.1002/adma.201900111
- J. Yuan, C. Bi, S. Wang, R. Guo, T. Shen, L. Zhang, and J. Tian, Spray-Coated Colloidal Perovskite Quantum Dot Films for Highly Efficient Solar Cells, Adv. Funct. Mater., 29, 1906615 (2019). https://doi.org/10.1002/adfm.201906615
- J. Xue, J.-W. Lee, Z. Dai, R. Wang, S. Nuryyeva, M. E. Liao, S.-Y. Chang, L. Meng, D. Meng, P. Sun, O. Lin, M. S. Goorsky, and Y. Yang, Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells, Joule, 2, 1866-1878 (2018). https://doi.org/10.1016/j.joule.2018.07.018
- Y. Dong, Y.-K. Wang, F. Yuan, A. Johnston, Y. Liu, D. Ma, M.-J. Choi, B. Chen, M. Chekini, S.-W. Baek, L. K. Sagar, J. Fan, Y. Hou, M. Wu, S. Lee, B. Sun, S. Hoogland, R. Quintero-Bermudez, H. Ebe, P. Todorovic, F. Dinic, P. Li, H. T. Kung, M.I. Saidaminov, E. Kumacheva, E. Spiecker, L.-S. Liao, O. Voznyy, Z.-H. Lu, and E. H. Sargent, Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots, Nat. Nanotechnol., 15, 668-674 (2020). https://doi.org/10.1038/s41565-020-0714-5
- L. Hu, Q. Zhao, S. Huang, J. Zheng, X. Guan, R. Patterson, J. Kim, L. Shi, C.-H. Lin, Q. Lei, D. Chu, W. Tao, S. Cheong, R. D. Tilley, A. W. Y. Ho-Baillie, J. M. Luther, J. Yuan, and T. Wu, Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture, Nat. Commun., 12, 466 (2021). https://doi.org/10.1038/s41467-020-20749-1