Defect Engineering of Metal Halide Perovskite Nanocrystals and Photovolatic Applciations

페로브스카이트 나노결정의 결점 엔지니어링 및 태양전지 응용 기술

  • Jin, Haedam (Department of Integrated Energy-AI, Jeonbuk National University) ;
  • Kim, Mi Kyong (Department of Integrated Energy-AI, Jeonbuk National University) ;
  • Cha, Jeongbeom (Department of Integrated Energy-AI, Jeonbuk National University) ;
  • Kim, Min (Department of Integrated Energy-AI, Jeonbuk National University)
  • 진해담 (전북대학교 에너지-AI융합공학과) ;
  • 김미경 (전북대학교 에너지-AI융합공학과) ;
  • 차정범 (전북대학교 에너지-AI융합공학과) ;
  • 김민 (전북대학교 에너지-AI융합공학과)
  • Published : 2021.10.31

Abstract

페로브스카이트 나노결정의 뛰어난 광전기적 특성과 표면 개질 용이성, 그리고 다양한 용액 공정 응용 가능성을 바탕으로 나노결정을 활용한 태양전지 응용 기술에 대한 연구가 폭넓게 진행되고 있다. 나노결정의 표면 및 결점 제어에 대한 화학적 이해와 공학적 제어 기술을 적용하여 다양한 광전소자의 효율을 향상시켜 왔으며, 최근 16.6% 광전효율의 페로브스카이트 나노결정 태양전지가 발표되었다. 나노결정을 태양전지에 활용하기 위해서는 광전특성 뿐만 아니라 연속적인 구동 안정성이 확보되어야 하며, 이를 위해서는 나노결정의 반응성이 높은 표면을 효율적으로 개질해야 한다. 이 총설에서는 페로브스카이트 나노결정의 표면 화학에 대한 기본 이해와 이를 제어하기 위한 리간드 치환 방법, 그리고 나노결정을 태양전지에 적용하기 위한 공학적 접근법에 대한 다양한 연구를 소개하고자 한다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 작성되었음(NRF-2021R1C1C1012188).

References

  1. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, 342, 341 (2013). https://doi.org/10.1126/science.1243982
  2. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3, Science, 342, 344 (2013). https://doi.org/10.1126/science.1243167
  3. D. Yang, G. Zhang, R. Lai, Y. Cheng, Y. Lian, M. Rao, D. Huo, D. Lan, and B. Zhao, D. Di, Germanium-lead perovskite light-emitting diodes, Nat. Commun., 12, 4295 (2021). https://doi.org/10.1038/s41467-021-24616-5
  4. L. Li, S. Ye, J. Qu, F. Zhou, J. Song, and G. Shen, Recent Advances in Perovskite Photodetectors for Image Sensing, Small, 17, 2005606 (2021). https://doi.org/10.1002/smll.202005606
  5. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells, Nano Lett., 13, 1764-1769 (2013). https://doi.org/10.1021/nl400349b
  6. M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells, J. Phys. Chem. Lett., 7, 167-172 (2016). https://doi.org/10.1021/acs.jpclett.5b02597
  7. R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit, H.-G. Boyen, M. F. Toney, and M. D. McGehee, Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics, J. Am. Chem. Soc., 139, 11117-11124 (2017). https://doi.org/10.1021/jacs.7b04981
  8. J. Lim, M. T. Horantner, N. Sakai, J. M. Ball, S. Mahesh, N. K. Noel, Y.-H. Lin, J. B. Patel, D. P. McMeekin, M. B. Johnston, B. Wenger, and H. J. Snaith, Elucidating the long-range charge carrier mobility in metal halide perovskite thin films, Energy Environ. Sci., 12, 169-176 (2019). https://doi.org/10.1039/C8EE03395A
  9. X. Gong, Z. Huang, R. Sabatini, C.-S. Tan, G. Bappi, G. Walters, A. Proppe, M. I. Saidaminov, O. Voznyy, S. O. Kelley, and E. H. Sargent, Contactless measurements of photocarrier transport properties in perovskite single crystals, Nat. Commun., 10, 1591 (2019). https://doi.org/10.1038/s41467-019-09538-7
  10. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites, Nat. Phys., 11, 582-587 (2015). https://doi.org/10.1038/nphys3357
  11. A. Dey, J. Ye, A. De, E. Debroye, S. K. Ha, E. Bladt, A. S. Kshirsagar, Z. Wang, J. Yin, Y. Wang, L. N. Quan, F. Yan, M. Gao, X. Li, J. Shamsi, T. Debnath, M. Cao, M. A. Scheel, S. Kumar, J. A. Steele, M. Gerhard, L. Chouhan, K. Xu, X.-g. Wu, Y. Li, Y. Zhang, A. Dutta, C. Han, I. Vincon, A. L. Rogach, A. Nag, A. Samanta, B. A. Korgel, C.-J. Shih, D. R. Gamelin, D. H. Son, H. Zeng, H. Zhong, H. Sun, H. V. Demir, I. G. Scheblykin, I. Mora-Sero, J. K. Stolarczyk, J. Z. Zhang, J. Feldmann, J. Hofkens, J. M. Luther, J. Perez-Prieto, L. Li, L. Manna, M. I. Bodnarchuk, M. V. Kovalenko, M. B. J. Roeffaers, N. Pradhan, O. F. Mohammed, O. M. Bakr, P. Yang, P. Muller-Buschbaum, P. V. Kamat, Q. Bao, Q. Zhang, R. Krahne, R. E. Galian, S. D. Stranks, S. Bals, V. Biju, W. A. Tisdale, Y. Yan, R. L. Z. Hoye, and L. Polavarapu, State of the Art and Prospects for Halide Perovskite Nanocrystals, ACS Nano, 15, 10775-10981 (2021). https://doi.org/10.1021/acsnano.0c08903
  12. P. Lu, M. Lu, H. Wang, N. Sui, Z. Shi, W. W. Yu, and Y. Zhang, Metal halide perovskite nanocrystals and their applications in optoelectronic devices, InfoMat, 1, 430-459 (2019). https://doi.org/10.1002/inf2.12031
  13. K. Xing, S. Cao, X. Yuan, R. Zeng, H. Li, B. Zou, and J. Zhao, Thermal and photo stability of all inorganic lead halide perovskite nanocrystals, Phys. Chem. Chem. Phys., 23, 17113-17128 (2021). https://doi.org/10.1039/D1CP02119B
  14. J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama, Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells, Acc. Chem. Res., 49, 554-561 (2016). https://doi.org/10.1021/acs.accounts.5b00452
  15. A. Mahapatra, D. Prochowicz, M. M. Tavakoli, S. Trivedi, P. Kumar, and P. Yadav, A review of aspects of additive engineering in perovskite solar cells, J. Mater. Chem. A, 8, 27-54 (2020). https://doi.org/10.1039/c9ta07657c
  16. D. Niesner, Surface electronic structure and dynamics of lead halide perovskites, APL Materials, 8, 090704 (2020).
  17. J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama, Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar Cells, J. Phys. Chem. Lett., 5, 2903-2909 (2014). https://doi.org/10.1021/jz501510v
  18. Y. Zhou, I. Poli, D. Meggiolaro, F. De Angelis, and A. Petrozza, Defect activity in metal halide perovskites with wide and narrow bandgap, Nat. Rev. Mater., (2021).
  19. J. Kim, C.-H. Chung, and K.-H. Hong, Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites, Phys. Chem. Chem. Phys., 18, 27143-27147 (2016). https://doi.org/10.1039/c6cp02886a
  20. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, Nano Lett., 15, 3692-3696 (2015). https://doi.org/10.1021/nl5048779
  21. Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang, and A. P. Alivisatos, Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies, J. Am. Chem. Soc., 137, 16008-16011 (2015). https://doi.org/10.1021/jacs.5b11199
  22. D. Zhang, Y. Yang, Y. Bekenstein, Y. Yu, N. A. Gibson, A. B. Wong, S. W. Eaton, N. Kornienko, Q. Kong, M. Lai, A. P. Alivisatos, S. R. Leone, and P. Yang, Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires through Anion-Exchange Reactions, J. Am. Chem. Soc., 138, 7236-7239 (2016). https://doi.org/10.1021/jacs.6b03134
  23. J. Xue, R. Wang, and Y. Yang, The surface of halide perovskites from nano to bulk, Nat. Rev. Mater., 5, 809-827 (2020). https://doi.org/10.1038/s41578-020-0221-1
  24. D. Yang, X. Li, W. Zhou, S. Zhang, C. Meng, Y. Wu, Y. Wang, and H. Zeng, CsPbBr3 Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification, Adv. Mater., 31, 1900767 (2019). https://doi.org/10.1002/adma.201900767
  25. D. P. Nenon, K. Pressler, J. Kang, B. A. Koscher, J. H. Olshansky, W. T. Osowiecki, M. A. Koc, L.-W. Wang, and A. P. Alivisatos, Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases, J. Am. Chem. Soc., 140, 17760-17772 (2018). https://doi.org/10.1021/jacs.8b11035
  26. X. Zheng, S. Yuan, J. Liu, J. Yin, F. Yuan, W.-S. Shen, K. Yao, M. Wei, C. Zhou, K. Song, B.-B. Zhang, Y. Lin, M. N. Hedhili, N. Wehbe, Y. Han, H.-T. Sun, Z.-H. Lu, T. D. Anthopoulos, O. F. Mohammed, E. H. Sargent, L.-S. Liao, and O. M. Bakr, Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes, ACS Energy Lett., 5, 793-798 (2020). https://doi.org/10.1021/acsenergylett.0c00057
  27. S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, and F. Hao, Lewis acid/base approach for efficacious defect passivation in perovskite solar cells, J. Mater. Chem. A, 8, 12201-12225 (2020). https://doi.org/10.1039/d0ta03957h
  28. M. Abdel-Shakour, T. H. Chowdhury, K. Matsuishi, Y. Moritomo, and A. Islam, Chemical passivation of the under coordinated Pb2+ defects in inverted planar perovskite solar cells via β-diketone Lewis base additives, Photochem. Photobiol. Sci., 20, 357-367 (2021). https://doi.org/10.1007/s43630-021-00023-z
  29. S. R. Smock, T. J. Williams, and R. L. Brutchey, Quantifying the Thermodynamics of Ligand Binding to CsPbBr3 Quantum Dots, Angew. Chem. Int. Ed., 57, 11711-11715 (2018). https://doi.org/10.1002/anie.201806916
  30. S. ten Brinck, and I. Infante, Surface Termination, Morphology, and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals, ACS Energy Lett., 1, 1266-1272 (2016). https://doi.org/10.1021/acsenergylett.6b00595
  31. V. K. Ravi, P. K. Santra, N. Joshi, J. Chugh, S. K. Singh, H. Rensmo, P. Ghosh, and A. Nag, Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes, J. Phys. Chem. Lett., 8, 4988-4994 (2017). https://doi.org/10.1021/acs.jpclett.7b02192
  32. J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko, and Z. Hens, Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals, ACS Nano, 10, 2071-2081 (2016). https://doi.org/10.1021/acsnano.5b06295
  33. G. Almeida, I. Infante, and L. Manna, Resurfacing halide perovskite nanocrystals, Science, 364, 833 (2019). https://doi.org/10.1126/science.aax5825
  34. Y. Liu, Z. Wang, S. Liang, Z. Li, M. Zhang, H. Li, and Z. Lin, Polar Organic Solvent-Tolerant Perovskite Nanocrystals Permanently Ligated with Polymer Hairs via Star-like Molecular Bottlebrush Trilobe Nanoreactors, Nano Lett., 19, 9019-9028 (2019). https://doi.org/10.1021/acs.nanolett.9b04047
  35. Z. Liu, Y. Bekenstein, X. Ye, S.C. Nguyen, J. Swabeck, D. Zhang, S.-T. Lee, P. Yang, W. Ma, and A.P. Alivisatos, Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs4PbBr6 Nanocrystals, J. Am. Chem. Soc., 139, 5309-5312 (2017). https://doi.org/10.1021/jacs.7b01409
  36. F. Palazon, G. Almeida, Q. A. Akkerman, L. De Trizio, Z. Dang, M. Prato, and L. Manna, Changing the Dimensionality of Cesium Lead Bromide Nanocrystals by Reversible Postsynthesis Transformations with Amines, Chem. Mater., 29, 4167-4171 (2017). https://doi.org/10.1021/acs.chemmater.7b00895
  37. M. L. H. Green, A new approach to the formal classification of covalent compounds of the elements, J. Organomet. Chem., 500, 127-148 (1995). https://doi.org/10.1016/0022-328X(95)00508-N
  38. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han, and H. Zeng, 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control, Adv. Mater., 29, 1603885 (2017). https://doi.org/10.1002/adma.201603885
  39. Y. Tan, Y. Zou, L. Wu, Q. Huang, D. Yang, M. Chen, M. Ban, C. Wu, T. Wu, S. Bai, T. Song, Q. Zhang, and B. Sun, Highly Luminescent and Stable Perovskite Nanocrystals with Octylphosphonic Acid as a Ligand for Efficient Light-Emitting Diodes, ACS Appl. Mater. Interfaces, 10, 3784-3792 (2018). https://doi.org/10.1021/acsami.7b17166
  40. F. Krieg, S. T. Ochsenbein, S. Yakunin, S. ten Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C.-J. Shih, I. Infante, and M.V. Kovalenko, Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability, ACS Energy Lett., 3, 641-646 (2018). https://doi.org/10.1021/acsenergylett.8b00035
  41. M. Imran, P. Ijaz, L. Goldoni, D. Maggioni, U. Petralanda, M. Prato, G. Almeida, I. Infante, and L. Manna, Simultaneous Cationic and Anionic Ligand Exchange For Colloidally Stable CsPbBr3 Nanocrystals, ACS Energy Lett., 4, 819-824 (2019). https://doi.org/10.1021/acsenergylett.9b00140
  42. S. Park, H. Cho, W. Choi, H. Zou, D. Y. Jeon, Correlation of near-unity quantum yields with photogenerated excitons in X-type ligand passivated CsPbBr3 perovskite quantum dots, Nanoscale Adv., 1, 2828-2834 (2019). https://doi.org/10.1039/c9na00292h
  43. J. Pan, Y. Shang, J. Yin, M. De Bastiani, W. Peng, I. Dursun, L. Sinatra, A. M. El-Zohry, M. N. Hedhili, A.-H. Emwas, O. F. Mohammed, Z. Ning, and O. M. Bakr, Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes, J. Am. Chem. Soc., 140, 562-565 (2018). https://doi.org/10.1021/jacs.7b10647
  44. J. Dai, J. Xi, Y. Zu, L. Li, J. Xu, Y. Shi, X. Liu, Q. Fan, J. Zhang, S. Wang, F. Yuan, H. Dong, B. Jiao, X. Hou, and Z. Wu, Surface mediated ligands addressing bottleneck of room-temperature synthesized inorganic perovskite nanocrystals toward efficient light-emitting diodes, Nano Energy, 70, 104467 (2020). https://doi.org/10.1016/j.nanoen.2020.104467
  45. C. Wang, A. S. R. Chesman, and J. J. Jasieniak, Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid, Chem. Commun., 53, 232-235 (2017). https://doi.org/10.1039/C6CC08282C
  46. F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N. Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, K. Yoshino, S. Dai, and Q. Shen, Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield, ACS Nano, 11, 10373-10383 (2017). https://doi.org/10.1021/acsnano.7b05442
  47. B. Luo, Y.-C. Pu, S. A. Lindley, Y. Yang, L. Lu, Y. Li, X. Li, and J. Z. Zhang, Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability, Angew. Chem. Int. Ed., 55, 8864-8868 (2016). https://doi.org/10.1002/anie.201602236
  48. M. Kazes, T. Udayabhaskararao, S. Dey, and D. Oron, Effect of Surface Ligands in Perovskite Nanocrystals: Extending in and Reaching out, Acc. Chem. Res., 54, 1409-1418 (2021). https://doi.org/10.1021/acs.accounts.0c00712
  49. K. Hills-Kimball, H. Yang, T. Cai, J. Wang, and O. Chen, Recent Advances in Ligand Design and Engineering in Lead Halide Perovskite Nanocrystals, Adv. Sci., 8, 2100214 (2021). https://doi.org/10.1002/advs.202100214
  50. L. M. Wheeler, E. M. Sanehira, A. R. Marshall, P. Schulz, M. Suri, N.C. Anderson, J. A. Christians, D. Nordlund, D. Sokaras, T. Kroll, S. P. Harvey, J. J. Berry, L. Y. Lin, and J. M. Luther, Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics, J. Am. Chem. Soc., 140, 10504-10513 (2018). https://doi.org/10.1021/jacs.8b04984
  51. J. Yuan, A. Hazarika, Q. Zhao, X. Ling, T. Moot, W. Ma, and J. M. Luther, Metal Halide Perovskites in Quantum Dot Solar Cells: Progress and Prospects, Joule, 4, 1160-1185 (2020). https://doi.org/10.1016/j.joule.2020.04.006
  52. M. Hao, Y. Bai, S. Zeiske, L. Ren, J. Liu, Y. Yuan, N. Zarrabi, N. Cheng, M. Ghasemi, P. Chen, M. Lyu, D. He, J.-H. Yun, Y. Du, Y. Wang, S. Ding, A. Armin, P. Meredith, G. Liu, H.-M. Cheng, and L. Wang, Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation, Nat. Energy, 5, 79-88 (2020). https://doi.org/10.1038/s41560-019-0535-7
  53. Y. Wang, J. Yuan, X. Zhang, X. Ling, B. W. Larson, Q. Zhao, Y. Yang, Y. Shi, J. M. Luther, and W. Ma, Surface Ligand Management Aided by a Secondary Amine Enables Increased Synthesis Yield of CsPbI3 Perovskite Quantum Dots and High Photovoltaic Performance, Adv. Mater., 32, 2000449 (2020). https://doi.org/10.1002/adma.202000449
  54. K. Chen, Q. Zhong, W. Chen, B. Sang, Y. Wang, T. Yang, Y. Liu, Y. Zhang, and H. Zhang, Short-Chain Ligand-Passivated Stable α-CsPbI3 Quantum Dot for All-Inorganic Perovskite Solar Cells, Adv. Funct. Mater., 29, 1900991 (2019). https://doi.org/10.1002/adfm.201900991
  55. D. Jia, J. Chen, M. Yu, J. Liu, E. M. J. Johansson, A. Hagfeldt, and X. Zhang, Dual Passivation of CsPbI3 Perovskite Nanocrystals with Amino Acid Ligands for Efficient Quantum Dot Solar Cells, Small, 16, 2001772 (2020). https://doi.org/10.1002/smll.202001772
  56. K. Ji, J. Yuan, F. Li, Y. Shi, X. Ling, X. Zhang, Y. Zhang, H. Lu, J. Yuan, and W. Ma, High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer, J. Mater. Chem. A, 8, 8104-8112 (2020). https://doi.org/10.1039/d0ta02743j
  57. J. Xue, R. Wang, L. Chen, S. Nuryyeva, T.-H. Han, T. Huang, S. Tan, J. Zhu, M. Wang, Z.-K. Wang, C. Zhang, J.-W. Lee, and Y. Yang, A Small-Molecule "Charge Driver" enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13%, Adv. Mater., 31, 1900111 (2019). https://doi.org/10.1002/adma.201900111
  58. J. Yuan, C. Bi, S. Wang, R. Guo, T. Shen, L. Zhang, and J. Tian, Spray-Coated Colloidal Perovskite Quantum Dot Films for Highly Efficient Solar Cells, Adv. Funct. Mater., 29, 1906615 (2019). https://doi.org/10.1002/adfm.201906615
  59. J. Xue, J.-W. Lee, Z. Dai, R. Wang, S. Nuryyeva, M. E. Liao, S.-Y. Chang, L. Meng, D. Meng, P. Sun, O. Lin, M. S. Goorsky, and Y. Yang, Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells, Joule, 2, 1866-1878 (2018). https://doi.org/10.1016/j.joule.2018.07.018
  60. Y. Dong, Y.-K. Wang, F. Yuan, A. Johnston, Y. Liu, D. Ma, M.-J. Choi, B. Chen, M. Chekini, S.-W. Baek, L. K. Sagar, J. Fan, Y. Hou, M. Wu, S. Lee, B. Sun, S. Hoogland, R. Quintero-Bermudez, H. Ebe, P. Todorovic, F. Dinic, P. Li, H. T. Kung, M.I. Saidaminov, E. Kumacheva, E. Spiecker, L.-S. Liao, O. Voznyy, Z.-H. Lu, and E. H. Sargent, Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots, Nat. Nanotechnol., 15, 668-674 (2020). https://doi.org/10.1038/s41565-020-0714-5
  61. L. Hu, Q. Zhao, S. Huang, J. Zheng, X. Guan, R. Patterson, J. Kim, L. Shi, C.-H. Lin, Q. Lei, D. Chu, W. Tao, S. Cheong, R. D. Tilley, A. W. Y. Ho-Baillie, J. M. Luther, J. Yuan, and T. Wu, Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture, Nat. Commun., 12, 466 (2021). https://doi.org/10.1038/s41467-020-20749-1