Acknowledgement
본 연구는 과학기술정보통신부의 재원으로 한국연구재단의 기후변화대응기술개발사업(NRF-2019M1A2A2072416)과 산업통상자원부의 재원으로 한국에너지기술평가원의 지원(20213091010010, 슈퍼 태양전지 - 실리콘 이론한계 돌파형(>35%) 이중접합 태양전지 개발)을 받아 수행된 연구임.
References
- V. D'Innocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, A. Petrozza, "Excitons versus free charges in organo-lead tri-halide perovskites," Nature Communications, 5(1), 3589 (2014). https://doi.org/10.1038/ncomms4589
- S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, "The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells," Energy & Environmental Science, 7(1), 399-407 (2014). https://doi.org/10.1039/C3EE43161D
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber," Science, 342 (6156), 341 (2013). https://doi.org/10.1126/science.1243982
- C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, "High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites," Advanced Materials, 26(10), 1584-1589 (2014). https://doi.org/10.1002/adma.201305172
- NREL, "Best Research-Cell Efficiency Chart, 2021," https://www.nrel.gov/pv/cell-efficiency.html. (Accessed 26 July 2021).
- S. Shao, M.A. Loi, "The Role of the Interfaces in Perovskite Solar Cells," Advanced Materials Interfaces, 7(1), 1901469 (2020). https://doi.org/10.1002/admi.201901469
- J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D.S. Kim, M. Gratzel, J.Y. Kim, "Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells," Nature, 592(7854), 381-385 (2021). https://doi.org/10.1038/s41586-021-03406-5
- Z. Hawash, L.K. Ono, Y. Qi, "Recent Advances in Spiro-MeOTAD Hole Transport Material and Its Applications in Organic-Inorganic Halide Perovskite Solar Cells," Advanced Materials Interfaces, 5(1), 1700623 (2018). https://doi.org/10.1002/admi.201700623
- T.P.I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker, J. Salbeck, "Spiro Compounds for Organic Optoelectronics," Chemical Reviews, 107(4), 1011-1065 (2007). https://doi.org/10.1021/cr0501341
- J.H. Noh, N.J. Jeon, Y.C. Choi, M.K. Nazeeruddin, M. Gratzel, S.I. Seok, "Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material," Journal of Materials Chemistry A, 1(38), 11842-11847 (2013). https://doi.org/10.1039/c3ta12681a
- J. Burschka, F. Kessler, M.K. Nazeeruddin, M. Gratzel, "Co (III) Complexes as p-Dopants in Solid-State Dye-Sensitized Solar Cells," Chemistry of Materials, 25(15), 2986-2990 (2013). https://doi.org/10.1021/cm400796u
- S.N. Habisreutinger, N.K. Noel, H.J. Snaith, R.J. Nicholas, "Investigating the Role of 4-Tert Butylpyridine in Perovskite Solar Cells," Advanced Energy Materials, 7(1), 1601079 (2017). https://doi.org/10.1002/aenm.201601079
- Z. Hawash, L.K. Ono, S.R. Raga, M.V. Lee, Y. Qi, "Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films," Chemistry of Materials, 27(2), 562-569 (2015). https://doi.org/10.1021/cm504022q
- X. Zhao, H.-S. Kim, J.-Y. Seo, N.-G. Park, "Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells," ACS Applied Materials & Interfaces, 9(8) ,7148-7153 (2017). https://doi.org/10.1021/acsami.6b15673
- S. Wang, M. Sina, P. Parikh, T. Uekert, B. Shahbazian, A. Devaraj, Y.S. Meng, "Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells," Nano Letters, 16(9), 5594-5600 (2016). https://doi.org/10.1021/acs.nanolett.6b02158
- E.J. Juarez-Perez, M.R. Leyden, S. Wang, L.K. Ono, Z. Hawash, Y. Qi, "Role of the Dopants on the Morphological and Transport Properties of Spiro-MeOTAD Hole Transport Layer," Chemistry of Materials, 28(16), 5702-5709 (2016). https://doi.org/10.1021/acs.chemmater.6b01777
- A.K. Jena, Y. Numata, M. Ikegami, T. Miyasaka, "Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste," Journal of Materials Chemistry A, 6(5), 2219-2230 (2018). https://doi.org/10.1039/C7TA07674F
- Y. Liu, Q. Chen, H.-S. Duan, H. Zhou, Y. Yang, H. Chen, S. Luo, T.-B. Song, L. Dou, Z. Hong, Y. Yang, "A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells," Journal of Materials Chemistry A, 3(22), 11940-11947 (2015). https://doi.org/10.1039/C5TA02502H
- W. Ke, D. Zhao, C.R. Grice, A.J. Cimaroli, G. Fang, Y. Yan, "Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers," Journal of Materials Chemistry A, 3(47), 23888-23894 (2015). https://doi.org/10.1039/C5TA07829F
- L.E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner, K. Leo, "Hole-transport material variation in fully vacuum deposited perovskite solar cells," APL Materials, 2(8), 081503 (2014). https://doi.org/10.1063/1.4889843
- N. Marinova, W. Tress, R. Humphry-Baker, M.I. Dar, V. Bojinov, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Gratzel, "Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation," ACS Nano, 9(4), 4200-4209 (2015). https://doi.org/10.1021/acsnano.5b00447
- Yuzheng Guo and John Robertson, "Origin of the high work function and high conductivity of MoO3," Applied Physics Letter, 105, 222110 (2014). https://doi.org/10.1063/1.4903538
- G.Y. Margulis, B.E. Hardin, I.-K. Ding, E.T. Hoke, M.D. McGehee, "Parasitic Absorption and Internal Quantum Efficiency Measurements of Solid-State Dye Sensitized Solar Cells," Advanced Energy Materials, 3(7), 959-966 (2013). https://doi.org/10.1002/aenm.201300057