DOI QR코드

DOI QR Code

Perovskite Solar Cells through Application of Hole Transporting Layers based on Vacuum Thermal Evaporation

진공 열 증착 기반의 정공수송층 적용을 통한 페로브스카이트 태양전지

  • Kim, Hye Seung (Department of Materials Science and Engineering, Ulsan National Institute of Sciences and Technology (UNIST)) ;
  • Song, Myoung Hoon (Department of Materials Science and Engineering, Ulsan National Institute of Sciences and Technology (UNIST))
  • 김혜승 (신소재공학과, 울산과학기술원) ;
  • 송명훈 (신소재공학과, 울산과학기술원)
  • Received : 2022.02.09
  • Accepted : 2022.03.15
  • Published : 2022.03.31

Abstract

In this study, we investigate organic-inorganic halide perovskite solar cells with a vacuum thermal evaporated hole transporting layer (NPB/MoO3-x). By replacing solution process based Spiro-MeOTAD with vacuum thermal evaporation based NPB/MoO3-x, a thin hole transporting layer was implemented. In addition, parasitic absorption that may occur during the doping process was eliminated by excluding solution process doping. In a solar cell with a thin vacuum thermal evaporated hole transporting layer, the short-circuit current density (Jsc) increased to 23.93 mA/cm2, resulting in the highest power converstion efficiency (PCE) at 18.76%. Considering these results, it is essential to control the thickness of hole transporting layer located at the top in solar cell configuration.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 한국연구재단의 기후변화대응기술개발사업(NRF-2019M1A2A2072416)과 산업통상자원부의 재원으로 한국에너지기술평가원의 지원(20213091010010, 슈퍼 태양전지 - 실리콘 이론한계 돌파형(>35%) 이중접합 태양전지 개발)을 받아 수행된 연구임.

References

  1. V. D'Innocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, A. Petrozza, "Excitons versus free charges in organo-lead tri-halide perovskites," Nature Communications, 5(1), 3589 (2014). https://doi.org/10.1038/ncomms4589
  2. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, "The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells," Energy & Environmental Science, 7(1), 399-407 (2014). https://doi.org/10.1039/C3EE43161D
  3. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber," Science, 342 (6156), 341 (2013). https://doi.org/10.1126/science.1243982
  4. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, "High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites," Advanced Materials, 26(10), 1584-1589 (2014). https://doi.org/10.1002/adma.201305172
  5. NREL, "Best Research-Cell Efficiency Chart, 2021," https://www.nrel.gov/pv/cell-efficiency.html. (Accessed 26 July 2021).
  6. S. Shao, M.A. Loi, "The Role of the Interfaces in Perovskite Solar Cells," Advanced Materials Interfaces, 7(1), 1901469 (2020). https://doi.org/10.1002/admi.201901469
  7. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D.S. Kim, M. Gratzel, J.Y. Kim, "Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells," Nature, 592(7854), 381-385 (2021). https://doi.org/10.1038/s41586-021-03406-5
  8. Z. Hawash, L.K. Ono, Y. Qi, "Recent Advances in Spiro-MeOTAD Hole Transport Material and Its Applications in Organic-Inorganic Halide Perovskite Solar Cells," Advanced Materials Interfaces, 5(1), 1700623 (2018). https://doi.org/10.1002/admi.201700623
  9. T.P.I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker, J. Salbeck, "Spiro Compounds for Organic Optoelectronics," Chemical Reviews, 107(4), 1011-1065 (2007). https://doi.org/10.1021/cr0501341
  10. J.H. Noh, N.J. Jeon, Y.C. Choi, M.K. Nazeeruddin, M. Gratzel, S.I. Seok, "Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material," Journal of Materials Chemistry A, 1(38), 11842-11847 (2013). https://doi.org/10.1039/c3ta12681a
  11. J. Burschka, F. Kessler, M.K. Nazeeruddin, M. Gratzel, "Co (III) Complexes as p-Dopants in Solid-State Dye-Sensitized Solar Cells," Chemistry of Materials, 25(15), 2986-2990 (2013). https://doi.org/10.1021/cm400796u
  12. S.N. Habisreutinger, N.K. Noel, H.J. Snaith, R.J. Nicholas, "Investigating the Role of 4-Tert Butylpyridine in Perovskite Solar Cells," Advanced Energy Materials, 7(1), 1601079 (2017). https://doi.org/10.1002/aenm.201601079
  13. Z. Hawash, L.K. Ono, S.R. Raga, M.V. Lee, Y. Qi, "Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films," Chemistry of Materials, 27(2), 562-569 (2015). https://doi.org/10.1021/cm504022q
  14. X. Zhao, H.-S. Kim, J.-Y. Seo, N.-G. Park, "Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells," ACS Applied Materials & Interfaces, 9(8) ,7148-7153 (2017). https://doi.org/10.1021/acsami.6b15673
  15. S. Wang, M. Sina, P. Parikh, T. Uekert, B. Shahbazian, A. Devaraj, Y.S. Meng, "Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells," Nano Letters, 16(9), 5594-5600 (2016). https://doi.org/10.1021/acs.nanolett.6b02158
  16. E.J. Juarez-Perez, M.R. Leyden, S. Wang, L.K. Ono, Z. Hawash, Y. Qi, "Role of the Dopants on the Morphological and Transport Properties of Spiro-MeOTAD Hole Transport Layer," Chemistry of Materials, 28(16), 5702-5709 (2016). https://doi.org/10.1021/acs.chemmater.6b01777
  17. A.K. Jena, Y. Numata, M. Ikegami, T. Miyasaka, "Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste," Journal of Materials Chemistry A, 6(5), 2219-2230 (2018). https://doi.org/10.1039/C7TA07674F
  18. Y. Liu, Q. Chen, H.-S. Duan, H. Zhou, Y. Yang, H. Chen, S. Luo, T.-B. Song, L. Dou, Z. Hong, Y. Yang, "A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells," Journal of Materials Chemistry A, 3(22), 11940-11947 (2015). https://doi.org/10.1039/C5TA02502H
  19. W. Ke, D. Zhao, C.R. Grice, A.J. Cimaroli, G. Fang, Y. Yan, "Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers," Journal of Materials Chemistry A, 3(47), 23888-23894 (2015). https://doi.org/10.1039/C5TA07829F
  20. L.E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner, K. Leo, "Hole-transport material variation in fully vacuum deposited perovskite solar cells," APL Materials, 2(8), 081503 (2014). https://doi.org/10.1063/1.4889843
  21. N. Marinova, W. Tress, R. Humphry-Baker, M.I. Dar, V. Bojinov, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Gratzel, "Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation," ACS Nano, 9(4), 4200-4209 (2015). https://doi.org/10.1021/acsnano.5b00447
  22. Yuzheng Guo and John Robertson, "Origin of the high work function and high conductivity of MoO3," Applied Physics Letter, 105, 222110 (2014). https://doi.org/10.1063/1.4903538
  23. G.Y. Margulis, B.E. Hardin, I.-K. Ding, E.T. Hoke, M.D. McGehee, "Parasitic Absorption and Internal Quantum Efficiency Measurements of Solid-State Dye Sensitized Solar Cells," Advanced Energy Materials, 3(7), 959-966 (2013). https://doi.org/10.1002/aenm.201300057