• Title/Summary/Keyword: half-wave

Search Result 574, Processing Time 0.025 seconds

3D Incident Wave Response of Structures on Layered Media (다층 반무한 지반-구조물계의 입사파 응답해석)

  • Kim, Moon-Kyum;Cho, Woo-Yeon;Koh, Jae-Pil
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.317-324
    • /
    • 1999
  • Dynamic interaction analysis of surface structure on layered half-space is performed in frequency domain under incident wave excitation. This present study adopts a coupling method that combines the finite element(FE) for the flexible structures and boundary element(BE) for the layered half-space. A semi-analytical approach is employed to reduce the integration range of wavenumbers in the BE formula. For the incident wave input, the response is decomposed and formulated after the impedance matrix for the structure system. Numerical examples are presented to demonstrate the accuracy of the method. The examples show the feasibility of an extended application to the complicated dynamic analysis of structures on layered media under incident wave excitation.

  • PDF

Antenna Factors of Half-wave Resonance Dipole Antennas above the Ground Plane (접지판 위에 놓여진 반파장 공진다이폴 안테나의 안테나 인자)

  • Ki-Chai Kim
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.4
    • /
    • pp.3-9
    • /
    • 1991
  • This paper presents the characteristics of antenna factors of half-wave resonance dipole antennas above a ground plane. The current distributions on a horizontal and vertical dipole antennas were analyzed by the Galerkin's method of moments, and these solutions are used for calculating the horizontal and vertical antenna factors above the ground plane. It is shown that accurate antenna factors of the horizontal and vertical dipole above the ground plane are required of the radiated emission test.

  • PDF

A Technique for Full Wave Rectification using a Single Transistor (Single Transistor에 의한 전파정류 Technique)

  • 이주근;이동근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.3
    • /
    • pp.7-10
    • /
    • 1978
  • A method of full wave rectification is proposed which is accomplished by an inverter circuit including R-feed back. Both halves of the input cycle can be presented in the out put by composing a conductive half cycle and an inactive half cycle substituted by feed back in the cut off state.

  • PDF

Modeling of SH-waves in a fiber-reinforced anisotropic layer

  • Kakar, Rajneesh
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.91-104
    • /
    • 2016
  • In this paper we investigate the existence of SH-waves in fiber-reinforced layer placed over a heterogeneous elastic half-space. The heterogeneity of the elastic half-space is caused by the exponential variations of density and rigidity. As a special case when both the layers are homogeneous, our derived equation is in agreement with the general equation of Love wave. Numerically, it is observed that the velocity of SH-waves decreases with the increase of heterogeneity and reinforced parameters. The dimensionless phase velocity of SH-waves increases with the decreases of dimensionless wave number and shown through figures.

Wave Deformation and Blocking Performance by a Porous Dual Semi-Cylindrical Structure (투과성 이중 반원통 구조물에 의한 파 차단성능)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • The interaction of oblique incident waves with a porous dual semi-cylindrical structure is investigated under the assumption of linear potential theory. The porous dual semi-cylindrical structure consists of two concentric bottom-mounted cylindrical structures that are porous in front half and transparent in back half. By changing porosity, gap, and wave characteristics(wave frequencies, incidence angle), the wave blocking performance as well as the wave loads and the wave run-up are obtained. As a convenient measure of overall wave blocking performance, the root mean square(R.M.S.) of the wave elevation in a sheltered region is used. It is found that the porous semi-cylindrical structure may significantly reduce the wave response in a sheltered region and the wave forces decrease largely compared to the impermeable structure. The dual structure is more effective in reducing the wave response in a sheltered region than the mono type in the region of high frequencies.

CAVITY OF CREATION FOR COLD FUSION AND GENERATION OF HEAT

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.3-12
    • /
    • 1996
  • Cold fusion technologies now are being developed very successfully. The $\pi$-far infrared rays are generated from three dimensional crystallizing $\pi$-bondings of oxygen atoms in water molecules. The growing cavity in water molecules make near resonance state and a vortex of infrared rays and attracts $\pi$-far infrared rays in the water. The cavity surrounded by a lot of $\pi$-far infrared rays has a very strong gravitational field. The $\pi$-far infrared rays are contracted into $\pi$-far infrared rays of half wave length and of one wave length. The $\pi$-far infrared rays of half wave length generate heat while $\pi$-far infrared rays of one wave length are contracted into $\pi$-gamma rays of one wave length. The contracted $\pi$-gamma rays of one wave length make nucleons and mesons, which is the creation and transmutation of matter by covalent bondings and three-dimensional crystallizing $\pi$-bondings into implosion bonding. Patterson power cell generates a very strong gravitational cavity because the electrolysized oxygen atoms make $\pi$-far infrared rays than in plain water.

  • PDF

A STUDY ON THE ORTHODONTIC TOOTH MOVEMENT UNDER HALF SINE-WAVE PULSED ELECTROMAGNETIC FIELDS (Half sine-wave pulsed electromagnetic fields 내에서 교정력에 의한 치아 이동에 대한 연구)

  • Kim, Young-Joon;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.897-916
    • /
    • 1994
  • The biologic potential, which is different from the piezoelectric signals, relates tooth movement at least in part to changes in bone metaboliosm in bioelectric theory. The purpose of this experiment was to determine wheather the application of half sine-wave pulsed electromagnetic fields (HSPEMF) could increase both the rate and amount of orthodontic tooth movement. Forty-three male Hartley guinea pigs, weighting approximately 255g, were utilized in this study. The animals were 35 days old at the start of the study. Laterally directed orthodontic force was applied to the maxillary central incisors of 40 Hartley guinea pigs (20 experimental, 20 control). According to the amount of orthodontic force (6g, 12g), they were divided into two sub-groups (10 experimental I, 10 experimental II, 10 control I, 10 control II). During the experimental period, experimental animals were placed in plastic animal holders with their heads positioned in an area of uniform electromagnetic field. Control animals were placed in similar plastic holders that did not carry the electric apparatus. The results were as follows : 1. The application of a HSPEMF to the experimental groups significantly increase the final amount of orthodontic tooth movement observed over a 10-day experimental period. 2. The application of a HSPEMF to the experimental groups significantly increase the velocity of orthodontic tooth movement observed over a 10-day experimental period. 3. There was no significant difference in the final amount of orthodontic tooth movement at the fourth day to the eighth day, but there was significant difference in the final amount of orthodontic tooth movement at the nineth, tenth day during a 10-day experimental period. 4. After 10 days of HSPEMF exposure & orthodontic force, the experimental groups demonstrated more osteodasts in the pressure side than control groups.

  • PDF

Numerical Study of Nonlinear Acoustic Damping Induced by Acoustic Resonators in a Rocket Combustor (로켓엔진 연소기내 공명기에 의한 비선형 음향감쇠에 관한 수치해석적 연구)

  • Sohn, Chae-Hoon;Park, I-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Nonlinear acoustic damping of a half-wave acoustic resonator in a rocket combustor is investigated numerically adopting a nonlinear acoustic analysis. First, in a baseline chamber without any resonators, acoustic behavior is investigated over the wide range of acoustic amplitude from 80 dB to 150 dB. Damping factor increases nonlinearly with acoustic amplitude and nonlinearity becomes appreciable at acoustic amplitude above 125 dB. Next, damping effect of a half-wave resonator is investigated. It is found that nonlinear acoustic excitation does not affect optimum tuning condition of the resonator, which is derived from linear acoustics. A half-wave resonator is effective even for acoustic damping of high-amplitude pressure oscillation, but its function of acoustic damper is relatively weakened compared with the case of linear acoustic excitation.

Shear waves propagation in an initially stressed piezoelectric layer imperfectly bonded over a micropolar elastic half space

  • Kumar, Rajneesh;Singh, Kulwinder;Pathania, D.S.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.121-129
    • /
    • 2019
  • The present study investigates the propagation of shear waves in a composite structure comprised of imperfectly bonded piezoelectric layer with a micropolar half space. Piezoelectric layer is considered to be initially stressed. Micropolar theory of elasticity has been employed which is most suitable to explain the size effects on small length scale. The general dispersion equations for the existence of waves in the coupled structure are obtained analytically in the closed form. Some particular cases have been discussed and in one particular case the dispersion relation is in well agreement to the classical-Love wave equation. The effects of various parameters viz. initial stress, interfacial imperfection and micropolarity on the phase velocity are obtained for electrically open and mechanically free system. Numerical computations are carried out and results are depicted graphically to illustrate the utility of the problem. The phase velocity of the shear waves is found to be influenced by initial stress, interface imperfection and the presence of micropolarity in the elastic half space. The theoretical results obtained are useful for the design of high performance surface acoustic devices.