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3D Incident Wave Response of Structures on Layered Media
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ABSTRACT

Dynamic interaction analysis of surface structure on layered half-space is performed in frequency domain
under incident wave excitation. This present study adopts a coupling method that combines the finite
element(FE) for the flexible structures and boundary element(BE) for the layered half-space. A semi-analytical
approach is employed to reduce the integration range of wavenumbers in the BE formula. For the incident
wave input, the response is decomposed and formulated after the impedance matrix for the structure system.
Numerical examples are presented to demonstrate the accuracy of the method. The examples show the
feasibility of an extended application to the complicated dynamic analysis of structures on layered media under

incident wave excitation.

1. INTRODUCTION

The dynamic interaction is an important factor when considering soil-structure systems under incident wave
excitation. A number of methods were introduced during the past decades to solve this mixed boundary value
problem in the frequency domain. Wong and Luco(1986) developed the semi-analytical method, Mohammadi
and Karabalis(1995), Qian et al.(1996) used numerical finite element and boundary element techniques.
However, its formulation is complicated in use and the soil media is limited to a homogeneous one.

In this study, dynamic interaction analysis on layered half-space is performed under incident wave
excitation. The coupling method that combines FE for the structures and BE for layered half-space makes it
feasible. Regarding the layered half-space, Green’s functions are adopted in terms of displacements for
dynamic point loads determined by expanding the two-dimensional fundamental solutions by Kim et al.(1999) to
three-dimensional fundamental solutions. For the incident wave input, the response is decomposed into the

response due to external and inertial forces, and the surface input motion. Both forces can be easily formulated

¢« AddiE E2FS B4, 434
o AAUtT E23 B
o QIALFA ATAEY A7

-317-



after the impedance matrix for the structure system and the control ground motions are decided. In order to
verify the fundamental solutions, response of rigid circular structure is tested. Then the incident wave response
of flexible circular structure resting on the layered half-space is examined to demonstrate the capability of the

developed procedure.

2. BOUNDARY ELEMENT FORMULATION

As shown in Figure 1, when the finite portion of half-space is occupied by the foundation, the equilibrium
conditions and the compatibility conditions for the displacements are imposed over the entire surface [', the

horizontally layered half-space is recreated. The representation applied to the surface I" is reduced to
u,(x) = [ (e300, (x)dl Gij = %.2) M

where x =(x,,0) and x, =(x,,,,0) represent the source point and the observation point located on the
traction-free surface, respectively. The function u;.,. represents the j-th component of the displacement at point
X due to a concentrated point force at point acting in the i-th direction and ¢; represents the j-th component of

the surface traction.

T z
foundation

d layer

J th layer

Figure 1 Surface structure on layered half-space

Since the horizontal flat surface is stress free, the traction of Green’s functions automatically vanish on I'.

Using the quadratic shape function at each element, equation (1) is transformed into a system of linear algebraic

equations
N *
u,(x) = thk[.‘;,uji(xs;x)dr] (Gj=xy2z) (2)
k=1
with p, k = 1, 2, ..., N, where N is the total number of surface elements. The value u,, represents the i-th
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component of the displacement of the p-th element, and 7, represents the j-th component of the surface traction

in the k-th surface element.  Equation (2) can be conveniently written in a matrix form as
et = (ole) 3

where the matrix [G], of dimension 3N x 3N, represents the force-displacement relationship between the
elements of [ and is called the compliance matrix for the flat surface .

For the fundamental solutions, the receiver is assumed to be located in the /-th layer, the governing
equations of motion in Cartesian coordinates can be obtained. Each layer is considered as homogeneous,
isotropic and satisfies linearly elastic conditions. In the -4 medium, the transformed displacement field must
satisfy the system of homogeneous or non-homogeneous ordinary second-order differential equations of motion.
The displacement field due to point source in frequency domain can be summarized in the following form of

equation:
u, (a),x)zi E[Dj (m,x;xs)e*kx.]dk P =X,Y,z (4)

where, i is \/: , p and q are the displacement and force direction, x* is horizontal distance between source and
receiver and h is source depth. k is the horizontal wavenumber and are the displacement Dj,and stress
vectors of P and SV waves with Z, =z-7", z =7z

Using the converging characteristics of displacement and stress vectors to the static solutions with
increasing wavenumber k& by Luco and Apsel(1983). The asymptotic solutions of Green’s functions can be
evaluated. Integrals of asymptotic solutions can be used out of the region [-g,a/ in which the asymptotic
solution accords with the numerical solution. Only within the region [-g,a/, numerical integration is used.

The displacement vector and stress vector are presented as follows
1 . il @ o~ i ~ il
uj,q(w,x)=-2;[ [P @L e Yt [ 1L )™ Yk [ (DL )™ }dkjl 5)

where n,p,q = x,5.z and ]){;q is the displacement vector and stress vector of j-th layer, where subscript 7 is the
direction of the displacement and ¢ is the direction of the applied force, and % is the wave number of horizontal

direction.

3. HYBRID FORMULATION FOR THE WAVE INPUTS

On the assumption that no slippage or uplift occurs at the soil-structure interface, the conditions of nodal forces
equilibrium and nodal displacements compatibility can be used to match the two independently modeled

substructures. For the total number of boundary elements used in the problem using shape function can be
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written in the following form

{u}={u" =[N} u} ©
{¢}=[VlP} 7)

where {uBE } and { t } are the displacement vector and traction of boundary element. {uF £ } and {Pr } are
displacement vector and nodal reaction force of finite element. In the modeling of structure, the plate element,
which has five degrees of freedom at each node, is used. Therefore, the matrix [N ] is introduced to match the
two different degrees of freedom. Considering the applied nodal force on the structure and displacement

equilibrium requirements dictate that

P,+P =P, _ (8)
[ u +INTIGT IV u }= (.} ©)

where, [E J is modified stiffness of finite element. If equation (9) is arranged about the displacement vector

{ u } as follows;
{u}=[K]+IVFIcT V] (P} = [sKEL} (10)

Therefore, the relationship between external force and nodal displacement is established.

For the wave inputs, the total displacement and traction fields can be divided into two parts by Thau’s
suggestion(1967); the free field due to the incident wave waves, and the scattered field generated by the motion
of the structure in the absence of any incident wave excitation. ~Also the traction fields can also be expressed in

terms of nodal forces as

{u={uf+{u} )
{P}=1{p j+{r} (12)

where { u, } and {Pr} are the total displacement and nodal force vectors described at the nodes of the finite
element discretization scheme, while the subscripts g and s indicate their free and scattered components,
respectively. Recalling the relationship between external forces and their displacements, we obtain equation

(13) combining with equation (3).

{P1=[c1{u.}-{u,} (13)
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The equilibrium of nodal forces yields
{Po}= 1B+ P 3+ {P0} (14)

Where {P } is the total external force vector applied on the structure and {Pim} is the internal elastic force

ext

vector of the structure substructure.
{u.}=[s I' [6Ku, }- . }] (15)

Therefore the relationship between the unknown displacements at the soil-structure interface and the known
incident wave excitation can be obtained after a direct substitution of equation (13) and (10) into equation (14),
with {P,

" } =0 condition.

4. VERIFICATION OF FUNDAMENTAL SOLUTION

The following example demonstrates the validity of the developed fundamental solutions. Dynamic stiffness
coefficients with resonance peaks due to a soil layer on a bedrock are computed, and the results are compared
with the results of Luco(1974). The first layer is characterized by Young’s modulus E, =1.76x10°N/m’,
Poisson’s ratio v, =0.3 and density p, =1.7x10°kg/m’. The second layer, a bed rock, is characterized by
Young’s modulus E, =1.25x10" N/m?, Poisson’s ratio v, =0.25 and density p, =2.0x10°kg/m’. The
above properties lead to a shear wave velocity ratio RC, =C,,/C, =2.5. Also, the ratio of layer depth to
radius(H /R) has constant number 0.5. Figure 2 shows the computed vertical stiffness coefficients
normalized by the static stiffness. Here the frequency range is 0<a, <6, with g, =wR/C,,. The obtained

results from this study closely agree with Luco’s calculation results.
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Figure 2 Response of surface structure on a layered half-space
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5. INCIDENT WAVE RESPONSE OF CIRCULAR SURFACE STRUCTURE

The developed method is applied to the incident wave analysis of circular surface structure, shown in Figure 3.
The dimensions of the structure are 7.3m for radius and 0.4m for thickness resting on the three layered half-space.
The structure is discretized in sixteen quadratic elements with eighty-one nodal points. The thickness of first
layer (H,) is 5.0m and the second (H,) is 10.0m. The properties of structure and layers are considered as

variables to find the effects of those materials. Details of material properties are presented in Table 1.

—
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Figure 3 Structure on three layered half-space
The acceleration is the N-S component of El-Centro earthquake, was used as control motion on the

ground surface. The peak ground acceleration(PGA) of the control motion is 0.319g. The control motion in

time domain is transformed to that of frequency domain motion using FFT. The total time is

Table 1 Material properties of layered media

Prop. Young’s Modulus Densi Poisson’s . .
Layer ° g(Gpa) (kg/mg Ratio Damping Ratio

1 0.5 1500 033 0.03
Eg, 0.8

2 Es, 1.0 1800 0.33 0.03
Eq, 2.0

3 4.0 4000 0.33 0.03
Eg, 10.0

Structure E, 20.0 2300 0.33 0.01
E;, 40.0

20.46 seconds and upper limit of frequency is 25 Hz. The transformed incident wave loads are applied to the x-
direction(100% of control motion) and z-direction{30% of control motion) for the horizontal and vertical motion.
In Figure 4 and 5, the response of the center point on structure is represented in time history after the inverse
FFT.

First, the horizontal displacements reduce significantly with increasing stiffness of structure as shown in
Figure 4(a). Especially, in rigid structure(E, = 500Gpa) the horizontal displacement converge to the input
motion. Also, Figure 5(a) shows that the stiffness of second layer affects the response. In vertical case,

descending trend of response is relatively small with increasing stiffness of structure and the second layer.
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Figure 4 Displacement as variation of structure stiffness (Eg =1.0Gpa)
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Figure 5 Displacement as variation of second layer stiffness (E; =20Gpa)
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However, the vertical response in the layered media is obviously different to the homogeneous case(Figure 5(b)).

The layer effect occurs more apparently in vertical direction than in horizontal one.

vertical wave experiences the reflection and defraction across the layers.

The reason is that the

Therefore, we can find that the layer

effect of soil is an important in the vertical direction. In order to show briefly what is mentioned above, Figure

6 is introduced.

motion and the horizontal axis normalizes the stiffness versus first case.
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In Figure 6 the perpendicular axis represents ratio of maximum displacement versus control
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Figure 6 Displacement as variation of second layer stiffness (E; =20Gpa)
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structure and soil layer is sufficient to control the maximum displacement in horizontal component but not in

vertical case. It is caused by the layer effect of vertical displacement and the flexibility of structure.

6. CONCLUSIONS

Incident wave analysis of structures on layered half-space is performed in the frequency domain. The
structures are modeled by finite elements and the layered half-space is modeled by boundary elements based on
the fundamental solutions of the layered half-space using semi-analytical approach. For the incident wave
input, the response is decomposed and formulated after the impedance matrix for the structure system.
Numerical examples are presented to demonstrate the accuracy of the presented method.

As a result, it is shown that the stiffnesses of the sub-layer and structure are important factors to control
the response of incident wave. The horizontal response reduces significantly as the stiffness of structure or
layer increase. On the contrary, the vertical response change is not apparent. Thus, the increasing stiffness of
structure may not be an effective way to lessen the vertical response. If the superstructure above the structure is
critical to the vertical movement, the alternative way is needed to decrease the motion. Additionally, it is

shown that the layer effect can be an important factor in soil-structure interaction problem.
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