• Title/Summary/Keyword: half bridge converter

Search Result 373, Processing Time 0.033 seconds

High-Efficiency Power Conditioning System for Grid-Connected Photovoltaic Modules

  • Choi, Woo-Young;Choi, Jae-Yeon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.561-567
    • /
    • 2011
  • This paper presents a high-efficiency power conditioning system (PCS) for grid-connected photovoltaic (PV) modules. The proposed PCS consists of a step-up DC-DC converter and a single-phase DC-AC inverter for the grid-connected PV modules. A soft-switching step-up DC-DC converter is proposed to generate a high DC-link voltage from the low PV module voltage with a high-efficiency. A DC-link voltage controller is presented for constant DC-link voltage regulation. A half-bridge inverter is used for the single-phase DC-AC inverter for grid connection. A grid current controller is suggested to supply PV electrical power to the power grid with a unity power factor. Experimental results are obtained from a 180 W grid-connected PV module system using the proposed PCS. The proposed PCS achieves a high power efficiency of 93.0 % with an unity power factor for a 60 Hz / 120 Vrms AC power grid.

A Characteristic Analysis of Resonant Voltage Resultant Type DC/DC Converter (공진 전압 합성형 DC/DC 컨버터의 특성해석)

  • Hwang, Gye-Ho;Kim, Jong-Hae;Nam, Seung-Sik;Kim, Dong-Hui;Jeong, Do-Yeong;O, Seung-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.40-47
    • /
    • 2000
  • This paper presents a circuit of resonant voltage resultant type DC/DC converter consists of two unit half-bridge high frequency resonant inverters, and describes operating modes, principle and analysis of the proposed circuit. Also, the analysis of the proposed circuit has generally described by using normalized parameters. Based on the characteristic values, a method of the circuit design is proposed. According to phase shift, the output voltage of the proposed circuit can be controlled. In addition, the justification of theoretical analysis was certified by comparing to the experimental waveforms. In the future, this proposed converter show that it can be practically used as the system of fixed DC voltage source etc.

  • PDF

A New Single-Stage PFC AC/DC Converter

  • Lee, Byoung-Hee;Kim, Chong-Eun;Park, Ki-Bum;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.238-240
    • /
    • 2007
  • A new ZVZCS Single-Stage Power-Factor-Correction(PFC) AC/DC converter with boost PFC cell is integrated with voltage doubler rectified asymmetrical half-bridge(VDRAHB) is proposed in this paper. The proposed converter features good power factor correction, low current harmonic distortions, tight output regulations and low voltage of link capacitor. An 85W prototype was implemented to show that it meets the harmonic requirements and standards satisfactorily with nearly unity power factor and high efficiency over universal input.

  • PDF

A Two-Phase Interleaved Single-Stage Isolated Boost-Half-Bridge AC-DC Converter using a Transformer with Flux Cancellation

  • Naradhipa, Adhistira M.;Kang, Suhan;Choi, Sewan
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.153-155
    • /
    • 2019
  • This paper proposes a two-phase interleaved bridgeless single-stage ac-dc converter with magnetic integration that can achieve CCM power factor correction without input current sensing. All switches achieve ZVS turn-on and all diodes achieve ZCS turn-on for the whole grid cycle. SDAB-based modulation strategy is applied which results in simple power control and wide range output voltage. A flux cancellation method to integrate the interleaved transformer is firstly proposed in this paper to reduce the core size and loss. Experimental results on a 1.7-kW, 50kHz prototype are given to verify the principle and advantages of the proposed ac-dc converter.

  • PDF

Design and Efficiency Analysis 48V-12V Converter using Gate Driver Integrated GaN Module (게이트 드라이버가 집적된 GaN 모듈을 이용한 48V-12V 컨버터의 설계 및 효율 분석)

  • Kim, Jongwan;Choe, Jung-Muk;Alabdrabalnabi, Yousef;Lai, Jih-Sheng Jason
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • This study presents the design and experimental result of a GaN-based DC-DC converter with an integrated gate driver. The GaN device is attractive to power electronic applications due to its superior device performance. However, the switching loss of a GaN-based power converter is susceptible to the common source inductance, and converter efficiency is severely degraded with a large loop inductance. The objective of this study is to achieve high-efficiency power conversion and the highest power density using a multiphase integrated half-bridge GaN solution with minimized loop inductance. Before designing the converter, several GaN and Si devices were compared and loss analysis was conducted. Moreover, the impact of common source inductance from layout parasitic inductance was carefully investigated. Experimental test was conducted in buck mode operation at 48 -12 V, and results showed a peak efficiency of 97.8%.

Digital Control of Two-Stage Electronic ballast for HID Lamps (2-단계 HID 램프용 전자식 안정기의 디지털 제어)

  • Lee, Woo cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.229-230
    • /
    • 2013
  • The conventional Three-Stage electronic ballast is stable, but Two-Stage electronic ballast has been researching because of efficiency. Three-Stage electronic ballast is consisted of PFC circuit, buck converter, and inverter circuit, but Two-stage is consisted of PFC circuit, Buck-Inverter full bridge circuit. The Buck-Inverter full bridge inverter consists of two half bridge inverters for low frequency switching, and high frequency switching. In the case of street lamp it is far from a lamp to a ballast, the conventional pulsed high voltage ignitor can not turn on the HID lamps because of reduction of ignition voltage. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps. Therefore, in the Two-Stage electronic ballast which has the resonant tank for ignition, the transient resonant current because of low frequency changing is analyzed, the novel algorithm is proposed to resuce the transient current.

  • PDF

Transient Current Control of Two-Stage Electronics Ballast for HID Lamps (HID 램프용 Two-Stage 전자식 안정기의 과도 전류 제어)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The conventional Three-Stage electronic ballast is stable, but Two-Stage electronic ballast has been researching because of efficiency. Three-Stage electronic ballast is consisted of PFC circuit, buck converter, and inverter circuit, but Two-stage is consisted of PFC circuit, Buck-Inverter full bridge circuit. The Buck-Inverter full bridge inverter consists of two half bridge inverters for low frequency switching, and high frequency switching. In the case of street lamp it is far from a lamp to a ballast, the conventional pulsed high voltage ignitor can not turn on the HID lamps because of reduction of ignition voltage. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps. Therefore, in the Two-Stage electronic ballast which has the resonant tank for ignition, the transient resonant current because of low frequency changing is analyzed, the novel algorithm is proposed to resuce the transient current.

Thyristor전력변환기-전동기계의 무효전력의 처리에 관한 연구

  • 유철로
    • 전기의세계
    • /
    • v.31 no.1
    • /
    • pp.50-58
    • /
    • 1982
  • As a method for improving the power factor and the waveform of ac line current drawn by ac to dc converters, converters of pulse-width control type with forced commutation circuits have been developed in recent years. However, these converters have rather complex commutation circuits which contain auxiliary thyristors in addition to the main thyristors, and their performance is not satisfactory. This paper proposes a new pulse-width controlled ac to dc converter, and analyses its commutation mechanism and its input and output characteristics. The proposed converter circuit consists of a usual thyristor bridge circuit with series diodes to which reactors and diodes are added. This circuit dose not contain auxiliary thyristors, and in this sense it is simpler than the previous converter circuits of pulse-width control type. Since the main thyristors of the converter can be forcedly turned off several times in a half cycle of source voltage, a pulse-width modulation control is possible in order to improve the current waveform as well as the power factor on ac line side. As to dc output side it is shown that the adjustable range of output voltage is wide and the voltage regulation is good due to a rapid reversal of voltage across the commutating capacitors by LC resonance during commutation period. It is also shown that the regenerative operation of the converter is possible.

  • PDF

Sensorless Control of PMSG for Small Wind Turbines (소형 풍력발전용 영구자석형 동기발전기의 센서리스 제어)

  • Jang, Suk-Ho;Park, Hong-Geuk;Lee, Dong-Choon;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • In this paper, a sensorless control of PMSG(Permanent Magnet Synchronous Generator) for small wind turbine systems, which is based on stator flux and back-emf estimation. Also, a cost-effective AE/DC/AC converter that consists of a two-leg three-phase PWM converter and a half-bridge PWM converter is used for vector control of PMSG, which is impossible with the conventional diode-rectifier type converter. A sensorless control algorithm can eliminate pulse encoders for speed measurement, which reduces the system cost. Using PSIM simulation, the validity of the converter control performance and MPPT control of PMSG have been verified.

Proposal of the Energy Recovery Circuit for Testing High-Voltage MLCC (고전압 MLCC 시험을 위한 에너지 회수 회로 제안)

  • Kong, So-Jeong;Kwon, Jae-Hyun;Hong, Dae-Young;Ha, Min-Woo;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.214-220
    • /
    • 2022
  • This paper proposes a test device designed for developing a high-voltage multilayer ceramic capacitor (MLCC). The proposed topology consists of an energy recovery circuit for charging/discharging capacitor, a flyback converter, and a boost converter for supplying power and a bias voltage application to the energy recovery circuit. The energy recovery circuit designed with a half-bridge converter has auxiliary switches operating before the main switches to prevent excessive current from flowing to the main switches. A prototype has been designed to verify the reliability of target capacitors following the voltage fluctuation with a frequency range below 65 kHz. To conduct high root mean square (RMS) current to the capacitor as a load, the MLCC test was conducted after the topology verification was completed through the film capacitor as a load. Through the agreement between the RMS current formula proposed in this paper and the MLCC test results, the possibility of its use was demonstrated for high-voltage MLCC development in the future.