• Title/Summary/Keyword: h-version of FEM

Search Result 11, Processing Time 0.018 seconds

Shape Optimal Design by P-version of Finite Element Method (p-Version 유한요소법에 의한 형상 최적화설계)

  • Kim, Haeng Joon;Woo, Kwang Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.729-740
    • /
    • 1994
  • In the shape optimal design based on h-version of FEM, the ideal mesh for the initial geometry most probably will not be suitable for the final analysis. Thus, it is necessary to remesh the geometry of the model at each stage of optimization. However, the p-version of FEM appears to be a very attractive alternative for use in shape optimization. The main advantages are as follows; firstly, the elements are not sensitive to distortion for interpolation polynomials of order $p{\geq}3$; secondly, even singular problems can be solved more efficiently with p-version than with the h-version by proper mesh design; thirdly, the initial mesh design are identical. The 2-D p-version model for shape optimization is presented on the basis of Bezier's curve fitting, gradient projection method, and integrals of Legendre polynomials. The numerical results are performed by p-version software RASNA.

  • PDF

Fatigue Crack Propagation Analysis by P-Version of Finite Element Method (P-version 유한요소법에 의한 피로균열해석)

  • 우광성;이채규
    • Computational Structural Engineering
    • /
    • v.5 no.3
    • /
    • pp.97-103
    • /
    • 1992
  • Since many design problems in the railroad, aerospace and machine structures involve considerations of the effect of cyclic loading, manufacturing and quality control processes much fully account for fatigue of critical components. Due to the sensitivity of the Paris law, it is very important to calculate .DELTA.K numerically to minimize the error of predicted fatigue life in cycles. However, it is shown that the p-version of FEM based on LEFM analysis is far better suited for computing the stress intensity factors than the conventional h-version. To demonstrate the proficiency of the proposed scheme, the welded T-joint with crack problems of box car body bolster assembly and a crack problem emanating from a circular hole in finite strip have been solved.

  • PDF

J-integral Analysis by P-version Crack Model (P-version 균열모델에 의한 J-적분해석)

  • 이채규;우광성;윤영필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.38-45
    • /
    • 1994
  • P-version finite element model for the computation of stress intensity factors in two dimensional cracked panels by J-integral method is presented. The proposed model is based on high order theory and hierarchical shape function. The displacements fields are defined by integrals of Legendre polynomials which can be classified into three part such as basic mode, side mode, integral mode. The stress intensity factors are computed by J-integral method. The example models for validating the proposed p-version model are centrally cracked panel, single and double edged crack in a rectangular panel under pure Mode I. And the analysis results are compared with those by the h-version of FEM and empirical solutions in literatures. Very good agreement with the existing solution are shown.

  • PDF

Fatigue Crack Propagation Analysis by P-version of Finite Element Method (P-Version 유한요소법에 의한 피로 균열 해석)

  • 우광성;이채규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.30-35
    • /
    • 1992
  • Since many design problems in the railroad, aerospace and machine structures involve considerations of the effect of cyclic loading, manufacturing and quality control processes must fully account for fatigue of critical components. Due to the sensitivity of the Paris law, it is very important to calculate the ΔK numerically to minimize the error of predicted fatigue life in cycles. It is shown that the p-version of FEM based on LEFM analysis is far better suited for computing the stress intensity factors than the conventional h-version. To demonstrate the proficiency of the proposed scheme, the welded T-joint with crack problem of box car body bolster assembly and a crack problem emanating Iron a circular hole in finite strip have been solved.

  • PDF

Analysis of Deformation and Microstructural Evolution during ECAP Using a Dislocation Cell Related Microstructure-Based Constitutive Model (전위쎌에 기초한 미세조직 구성모델을 이용한 ECAP 공정 시 변형과 미세조직의 진화 해석)

  • Kim H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.207-210
    • /
    • 2004
  • The deformation behavior of copper during equal channel angular pressing (ECAP) was calculated using a three-dimensional version of a constitutive model based on the dislocation density evolution. Finite element simulations of the variation of the dislocation density and the dislocation cell size with the number of ECAP passes are reported. The calculated stress, strain and cell size are compared with the experimental data for Cu deformed by ECAP in a modified Route C regime. The results of FEM analysis were found to be in good agreement with the experiments. After a rapid initial decrease down to about 200 nm in the first ECAP pass, the average cell size was found to change little with further passes. Similarly, the strength increased steeply after the first pass, but tended to saturate with further pressings. The FEM simulations also showed strain non-uniformities and the dependence of the resulting strength on the location within the workpiece.

  • PDF

Plastic Deformation and Microstructural Evolution during ECAP Using a Dislocation Cell Related Microstructure-Based Constitutive Model (전위쎌에 기초한 미세조직 구성모델을 이용한 ECAP 공정 시 소성변형과 미세조직의 진화)

  • Yoon, S.C.;Baik, S.C.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.441-444
    • /
    • 2006
  • The deformation behavior of copper during equal channel angular pressing(ECAP) was calculated using a three-dimensional version of a constitutive model based on the dislocation density evolution. Finite element simulations of the variation of the dislocation density and the dislocation cell size with the number of ECAP passes are reported. The calculated stress, strain and cell size are compared with the experimental data for Cu deformed by ECAP in a modified Route C regime. The results of FEM analysis were found to be in good agreement with the experiments. After a rapid initial decrease down to about 200nm in the first ECAP pass, the average cell size was found to change little with further passes. Similarly, the strength increased steeply after the first pass, but tended to saturate with further pressings. The FEM simulations also showed strain non-uniformities and the dependence of the resulting strength on the location within the workpiece.

A Study of Lateral Resistance of Block Breakwater Combined with Piles (수치해석을 이용한 말뚝이 결합된 블록식방파제의 수평저항력에 관한 연구)

  • Lee, Won-Hyo;Kwon, Soon-Goo;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.100-108
    • /
    • 2022
  • Three-dimensional FEM numerical analysis was performed to understand the behaviors of blocks and piles according to the horizontal load for the block breakwater combined with piles. The Modified Mohr-Coulomb model, the improved version of the Mohr-Coulomb model, was applied for the ground modeling. The cases when the pile is embedded only into the block, embedded to the riprap layer (H = 4.29 cm), and embedded to the ground down to 2H, 3H, and 4H were examined. The results of the laboratory model experiment and the numerical analysis showed similar horizontal resistance force-displacement behaviors. The pile showed rotational behavior up to the embedment depth of 1H~2H and bending behavior in the case of 3H~4H depth embedment. When the embedment depth of the pile is 3H or more, the pile shows a bending behavior, so it can be considered that the pile contributes significantly to the horizontal resistance of the block breakwater. The results of this study will be used for various numerical analyses for real-size structure design.

Design of Femoral Tunnel Entrance to Operate Notchplasty (Notchplasty 시술을 위한 대퇴골 터널 입구 형상 설계)

  • Chung G.Y.;Kim K.T.;Lee T.H.;Ahn J.Y.;Han J.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.279-283
    • /
    • 2000
  • After ACL reconstruction. abrasion or wear of graft appeared frequently because of contact stresses between femoral tunnel and ACL. To minimize these problems. optimal shape of femoral tunnel is necessary. In this study. we evaluate friction force by degree of wear due to abrasion of soft tissue and develop 3-dimensional FEM model using ANSYS 5.5.1 version to analyze stress growths between femoral tunnel and ACL, We conclude that femoral tunnel angle must be slacked parallel to tunnel direction to minimize contact stress.

  • PDF