• Title/Summary/Keyword: gyroscope technology

Search Result 127, Processing Time 0.026 seconds

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the space launch vehicle (우주발사체 자세제어용 링 레이저 자이로 피에조 구동기 설계)

  • Kim, Eui-Chan;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.31-35
    • /
    • 2010
  • The Ring Laser Gyroscope makes use of the Sagnac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. The space launch vehicle use require the high accuracy Gyro to control and determine the altitude to deliver the satellite in the space. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller is described. The Design for Path Length Controller is composed of the demodulator, integrator, phase shifter, high voltage amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.

Study on Vertical Velocity-Based Pre-Impact Fall Detection (수직속도 기반 충격전 낙상 감지에 관한 연구)

  • Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.251-258
    • /
    • 2014
  • While the feasibility of vertical velocity as a threshold parameter for pre-impact fall detection has been verified, effects of sensor attachment locations and methods calculating vertical acceleration and velocity on the detection performance have not been studied yet. Regarding the vertical velocity-based pre-impact fall detection, this paper investigates detection accuracies of eight different cases depending on sensor locations (waist vs. sternum), vertical accelerations (accurate acceleration based on both accelerometer and gyroscope vs. approximated acceleration based on only accelerometer), and vertical velocities (velocity with attenuation vs. velocity difference). Test results show that the selection of waist-attached sensor, accurate acceleration, and velocity with attenuation based on accelerometer and gyroscope signals is the best in overall in terms of sensitivity and specificity of the detection as well as lead time.

Analysis and application of the dynamically tuned gyroscope (Angular velocity sensor of EOTS) (동조자이로스코프의 해석 및 응용 (전자광학추적기의 회전각속도 센서))

  • Im, Sung-Woon
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.47-56
    • /
    • 1996
  • The basic principle and characteristics of a DTG(dynamically tuned gyroscope) are presented in this paper, which is used for the detection of disturbance and for the stabilization of gimbal. An accurate model of the rate mode DTG is proposed. This model has a resonance characteristics which is more similar to the characteristics of practical systems than the conventional 2nd order system model. Therefore, this model is applicable to the general rate mode gyroscope. Some problems at using DTG for a real electro optical tracking system are discussed and a solution is described.

  • PDF

Signal Detection and Control of Hemispherical Resonator Gyroscopes (반구형 공진 자이로스코프의 신호 검출 및 제어)

  • Hyun, Chul;Kang, Tae-Sam
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.204-210
    • /
    • 2012
  • In this paper, signal detection and control circuits for hemispherical resonator gyroscope(HRG) are designed, simulated and tested. HRG is one of the coriolis vibratory gyroscope(CVG) which has very stable quartz hemispherical resonator and shows very precise performance. HRG signals are usually modulated at the several kHz of resonant frequency. So the general control scheme cannot be applied directly because general control schemes mainly focused at low frequency range. Using demodulated and modulated PI control scheme with the signal detection which is presented in this paper, performance of manufactured HRG has tested.

Miniaturized gyroscopes using micromachining technology (마이크로머시닝 기술을 이용한 초소형 자이로센서의 연구동향)

  • Han, S.O.;Pak, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1971-1973
    • /
    • 1996
  • In this paper various types of gyroscope fabricated by micromachining technologies were reviewed. Four common types of gyroscope reported in the past few years are beam, tuning fork, gimbal, and vibrating shell structure made by surface micromachining using sacrificial layer, bulk micromachining using RIE, or electroplating method. In the study of these new gyroscopes, the fabrication methods, advantages and disadvantages of each structure were examined as well as the direction of development in the future.

  • PDF

The Fiber Optic Gyroscope (I) (광섬유 자이로스코프 (I))

  • 이석정;배정철;홍창희
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.171-178
    • /
    • 1994
  • Fiber optic gyroscopes must be a promising technology that can replace conventional mechanical ones based on the principle of inertia of spinning masses. The advantages of fiber optic gyroscopes over mechanical ones include low cost, light weight, compact size and fast turn-on time. We will apply them to fiber optic gyrocompass for ships. Fiber optic gyrocompass for ships requires the north-seeking accuracy of $15^{\circ}$/hr, earth rotation rate, or better. This article introduces the fiber optic gyroscope as rotation sensor in the fiber optic gyrocompass system for ships that is planed to develop in our laboratory.

  • PDF

Vibrotactile Space Mouse (진동촉각 공간 마우스)

  • Park, Jun-Hyung;Choi, Ye-Rim;Lee, Kwang-Hyung;Back, Jong-Won;Jang, Tae-Jeong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.337-341
    • /
    • 2008
  • This paper presents a vibrotactile space mouse which use pin-type vibrotactile display modules and a gyroscope chip. This mouse is a new interface device which is not only an input device as an ordinary space mouse but also a tactile output device. It consists of a space mouse which use gyroscope chip and vibrotactile display modules which have been developed in our own laboratory. Lately, by development of vibrotactile display modules which have small size and consume low power, vibrotactile displays are available in small sized embedded systems such as wireless mouses or mobile devices. Also, development of new sensors like miniature size gyroscope by MEMS technology enables manufacturing of a small space mouse which can be used in the air not in a plane. The vibrotactile space mouse proposed in this paper recognizes motion of a hand using the gyroscope chip and transmits the data to PC through Bluetooth. PC application receives the data and moves pointer. Also, 2 by 3 arrays of pin-type vibrotactile actuators are mounted on the front side of the mouse where fingers of a user's hand contact, and those actuators could be used to represent various information such as gray-scale of an image or Braille patterns for visually impared persons.

  • PDF

Reliability and Validity Study of Inertial Sensor-Based Application for Static Balance Measurement

  • Park, Young Jae;Jang, Ho Young;Kim, Kwon Hoi;Hwang, Dong Ki;Lee, Suk Min
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.3
    • /
    • pp.311-320
    • /
    • 2022
  • Objective: To investigate the reliability and validity of static balance measurements using an acceleration sensor and a gyroscope sensor in smart phone inertial sensors. Design: Equivalent control group pretest-posttest. Methods: Subjects were forty five healthy adults aged twenty to fifty-years-old who had no disease that could affect the experiment. After pre-test, all participants wore a waist band with smart phone, and conducted six static balance measurements on the force plate twice for 35 seconds each. To investigate the test-retest reliability of both smart phone inertial sensors, we compared the intra-correlation coefficient (ICC 3, 1) between primary and secondary measurements with the calculated root mean scale-total data. To determine the validity of the two sensors, it was measured simultaneously with force plate, and the comparision was done by Pearson's correlation. Results: The test-retest reliability showed excellent correlation for acceleration sensor, and it also showed excellent to good correlation for gyroscope sensor(p<0.05). The concurrent validity of smartphone inertial sensors showed a mostly poor to fair correlation for tandem-stance and one-leg-stance (p<0.05) and unacceptable correlation for the other postures (p>0.05). The gyroscope sensor showed a fair correlation for most of the RMS-Total data, and the other data also showed poor to fair correlation (p<0.05). Conclusions: The result indicates that both acceleration sensor and gyroscope sensor has good reliability, and that compared to force plate, acceleration sensor has unacceptable or poor correlation, and gyroscope sensor has mostly fair correlation.

Mechanical Design of Ring Laser Gyroscope Using Finite Element Method (링 레이저 자이로스콥을 위한 유한요소법 기계 설계)

  • Lee, Jeong Ick
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.107-111
    • /
    • 2013
  • The gyroscopes have been used as a suitable inertial instrument for the navigation guidance and attitude controls. The accuracy as very sensitive sensor is limited by the lock-in region (dead band) due to the frequency coupling between two counter-propagating waves at low rotation rates. This frequency coupling gives no phase difference, and an angular increment is not detected. This problem can be overcome by mechanically dithering the gyroscope. This paper presents the design method of mechanical dither by the theoretical considerations and the verification of the theoretical equations through FEM applications. As a result, comparing to the past result, the maximum prediction error of resonant frequency was within 3 percent and peak dither rate was within 5 percent. It was found that the theoretical equations can be feasible for the mechanical performance of dither.

A Study on the Relation Between the Scale Factor Non-linearity and Dither Noise form of Ring Laser Gyroscope (링레이저 자이로의 환산계수 비선형성과 공진기 각진동 잡음 형태의 관련성 연구)

  • Shim, Kyu-Min;Lee, Youn-Seon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.107-115
    • /
    • 2007
  • In this paper we confirm the disappearance of dynamic lock-in simply by increasing the dither noise magnitude of the ring laser gyroscope by numerical and experimental method. After that, we numerically study the relation between the dither noise forms and scale factor non-linearities by comparing those of the two case outputs which are individually generated by operating with the two types of dither noise forms. The first one is the simple form composed of consecutive alternations of the random increasing and decreasing parts but maximum and minimum dither envelopes are scarcely changeable. And the second one is similar to the first one but maximum and minimum dither envelopes are randomly changable. As a result, we find that the scale factor non-linearity could be improved by the second one. And we confirm those results by experimental measurements.