• Title/Summary/Keyword: gyrB

Search Result 90, Processing Time 0.028 seconds

Cross Resistance of Fluoroquinolone Drugs on gyrA Gene Mutation in Mycobacterium tuberculosis (결핵균에서 gyrA 유전자 돌연변이에 따른 Fluoroquinolone계 약제들의 교차내성)

  • Park, Young Kil;Park, Chan Hong;Koh, Won-Jung;Kwon, O Jung;Kim, Bum Jun;Kook, Yoon Hoh;Cho, Sang Nae;Chang, Chulhun;Bai, Gill Han
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.3
    • /
    • pp.250-256
    • /
    • 2005
  • Background : Fluoroquinolone drugs are an important anti-tuberculous agent for the treatment of multi-drug resistant tuberculosis. However, many drugs belonging to the fluoroquinolones have different cross resistance to each other. Methods : Sixty-three ofloxacin (OFX) resistant and 10 pan-susceptible M. tuberculosis isolates were selected, and compared for their cross resistance using a proportion method on Lowenstein-Jensen media, containing ofloxacin (OFX), ciprofloxacin (CIP), levofloxacin (LVX), moxifloxacin (MXF), gatifloxacin (GAT) and sparfloxacin (SPX), at concentrations ranging from 0.5 to $3{\mu}g/ml$. DNA extracted from the isolates was directly sequenced after amplifying from the gyrA and gyrB genes. Results : The 63 OFX resistant M. tuberculosis isolates showed complete cross resistance to CIP, but only 90.5, 44.4, 36.5 and 46.0% to LVX, MXF, GAT, and to SPX, respectively. Fifty-one of the isolates (81.0%) had point mutations in codons 88, 90, 91 and 94 in gyrA, which are known to be correlated with OFX resistance. The Gly88Ala, Ala90Valand Asp94Ala mutations in gyrA showed a tendency to be susceptible to MXF, GAT and SPX. Only 4 isolates had mutations in the gyrB gene, which did not affect the OFX resistance. Conclusion : About 60% of the OFX resistant M. tuberculosis isolates were susceptible to GAT, SPX and MXF. These fluoroquinolones may be useful in the treatment of TB patients showing OFX resistance.

Analysis of the Fluoroquinolone Antibiotic Resistance Mechanism of Salmonella enterica Isolates

  • Kim, Soo-Young;Lee, Si-Kyung;Park, Myeong-Soo;Na, Hun-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1605-1612
    • /
    • 2016
  • Quinolone-resistant Salmonella strains were isolated from patient samples, and several quinolone-sensitive strains were used to analyze mutations in the quinolone resistance-determining region (QRDR) of gyrA, gyrB, parC, and parE and to screen for plasmid-mediated quinolone resistance. Among the 21 strains that showed resistance to nalidixic acid and ciprofloxacin (MIC 0.125-2.0 μg/ml), 17 strains had a mutation in QRDR codon 87 of gyrA, and 3 strains had a single mutation (Ser83 → Phe). Another cause of resistance, efflux pump regulation, was studied by examining the expression of acrB, ramA, marA, and soxS. Five strains, including Sal-KH1 and Sal-KH2, showed no increase in relative expression in an analysis using the qRT-PCR method (p < 0.05). In order to determine the genes involved in the resistance, the Sal-9 isolate that showed decreased susceptibility and did not contain a mutation in the gyrA QRDR was used to make the STM (MIC 8 μg/ml) and STH (MIC 16 μg/ml) ciprofloxacin-resistant mutants. The gyrA QRDR Asp87 → Gly mutation was identified in both the STM and STH mutants by mutation analysis. qRT-PCR analysis of the efflux transporter acrB of the AcrAB-TolC efflux system showed increased expression levels in both the STM (1.79-fold) and STH (2.0-fold) mutants. In addition, the expression of the transcriptional regulator marA was increased in both the STM (6.35-fold) and STH (21.73-fold) mutants. Moreover, the expression of soxS was increased in the STM (3.41-fold) and STH (10.05-fold) mutants (p < 0.05). Therefore, these results indicate that AcrAB-TolC efflux pump activity and the target site mutation in gyrA are involved in quinolone resistance.

Comparison of Fluoroquinolone Resistance Determinants in Uropathogenic Escherichia coli between 2 Time Periods of 1989 and 2010-2014 at Gangwon Province in Korea

  • Park, Min
    • Biomedical Science Letters
    • /
    • v.26 no.2
    • /
    • pp.120-126
    • /
    • 2020
  • Fluoroquinolone (FQ) resistant uropathogenic Escherichia coli (UPEC) have become a major problem in urinary tract infections (UTIs). The purpose of this study was to compare the quinolone resistance-determining region (QRDR) and plasmid mediated quinolone resistance (PMQR) determinants of FQ resistant UPEC between 1989 and 2010-2014. A total of 681 strains of UPEC clinical isolates was collected from Korean healthcare facility in 1989 (123 strains) and in 2010-2014 (558 strains). The minimum inhibitory concentrations (MICs) of FQs were determined by agar dilution method. QRDRs (gyrA, gyrB, parC and parE) and PMQR determinants (qnrA, qnrB, qnrS, aac(6')-Ib-cr and qepA) were analyzed polymerase chain reaction and sequencing method. Among 681 isolates, FQ resistant UPEC were 3 strains (2.4%) in 1989 isolates and 220 strains (39.4%) in 2010-2014 isolates. The rate of the FQ resistant UPEC strains in 2010-2014 isolates was increased than that of in 1989 isolates. UPEC isolates from 1989 and 2010-2014 were shown to carry mutations in gyrA (Ser83 and Asp87), gyrB (Ser464 and Thr469), parC (Ser80 and Glu84) and parE (Glu460, Ser458, Ile464 and Leu445). The most common mutations of QRDRs in 1989 isolates were Ser83Leu and Asp87Gly in gyrA and Ser80Ile in parC (2 strains: 66.7%) while those in 2010-2014 isolates were Ser83Leu and Asp87Asn in gyrA and Ser80Il2 and Glu84Val in parC (88 strains: 40.0%). PMQR determinants were detected only in 2010-2014 UPEC strains (47 strains: 21.4%).

Relationship between Moxifloxacin Resistance Pheno- and Genotype of Moxifloxacin-Resistant Mycoplasma hominis Obtained in vitro (인위적으로 유도된 목시플로사신 내성 Mycoplasma hominis의 표현형과 유전자형의 연관성)

  • Park, In-Dal;Choi, Myung-Won
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1544-1548
    • /
    • 2010
  • Moxifloxacin (MF) - resistant mutants of Mycoplasma hominis (M. hominis) were generated by stepwise selection in increasing concentrations of MF, and six strains of MF resistant M. hominis mutants - M1, M4, M8, M16, M32, and M64 - in which MICs of MF were 0.5, 4, 8, 16, 32, 64 ${\mu}g$/ml, respectively, were generated. Compared to the sequence of M. hominis PG21, all mutants harbored amino acid substitutions of Arg-163 Thr in GyrA, and Pro-445 Gln in ParE. While the concentrations were getting higher, an additional amino acid substitution was found at Ser-153 Lys in GyrA (${\geq}4{\mu}g/ml$), Ser-91 Ile in ParC (${\geq}16{\mu}g/ml$), and Val-450 Phe (${\geq}64{\mu}g/ml$) in GyrB. These substitutions seem to have an impact on resistance to MF, and GyrB change was found only in the highest concentration and seems to be associated with high-level resistance to MF. This, as far as we know, is the first description of a relationship between MF resistance phenotype and genotype.

Analysis of Sequence Type and Fluoroquinolone Resistance in Ciprofloxacin-Resistant Escherichia coli (Ciprofloxacin 내성 대장균에서 Sequence Type과 Fluoroquinolone 내성의 분석)

  • Cho, Hye Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.3
    • /
    • pp.217-224
    • /
    • 2021
  • Fluoroquinolone (FQ) resistant gram-negative pathogens have emerged worldwide, and the recent increase in FQ resistant Escherichia coli is of great concern in Korea. This study investigated FQ resistance determinants and the epidemiological relationship of 56 ciprofloxacin-resistant E. coli isolated from a tertiary hospital in Daejeon, South Korea from June to December 2018. Molecular epidemiology was investigated by multilocus sequence typing (MLST). Polymerase chain reaction (PCR) and sequence analysis were performed to identify chromosomal mutations in the quinolone resistance determining regions (QRDR) of gyrA, gyrB, parC, and parE and to describe the occurrence of the following plasmid-mediated quinolone resistance (PMQR) genes: aac(6)-Ib-cr, qepA, qnrA, qnrB, qnrC, qnrD, and qnrS. MLST analysis showed 12 sequence types (STs) and the most prevalent ST was ST131 (31/56, 55.4%), followed by ST1193 (13/56, 23.2%), and ST405 (3/56, 5.4%). In 56 ciprofloxacin-resistant E. coli isolates, Ser83→Leu and Asp87→Asn in gyrA and Ser80→Ile and Glu84→Val in parC (51.8%, 29/56) were the most frequent amino acid substitutions and aac(6)-Ib-cr (33.9%, 19/56) was the most common PMQR gene. These results of FQ resistance determinants were more frequently observed in ST131 compared with other clones. Continuous monitoring of the epidemiological characteristics of ciprofloxacin-resistant E. coli isolates and further investigation of FQ resistance determinants are necessary.

Discrepancies in genetic identification of fish-derived Aeromonas strains

  • Han, Hyun-Ja;Kim, Do-Hyung
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.391-400
    • /
    • 2009
  • Genetic identification of 17 fish-derived Aeromonas strains was attempted using 5 housekeeping genes. 16S rRNA, gyrB, rpoD, dnaJ and recA genes from the 17 strains were amplified, and total of 85 amplicons were sequenced. DNA sequences of the strains and type strains of the 17 Aeromonas homology groups were used for genetic identification and phylogenetic analyses. None of the strains was identified as a single species using the 16S rRNA gene, showing the same identities (average = 99.7%) with several Aeromonas species. According to gyrB, rpoD, dnaJ, and recA, 9 strains and RFAS-1 used in this study were identified as A. hydrophila and A. salmonicida, respectively. However, the other strains were closely related to 2 or more Aeromonas species (i.e., A. salmonicida, A. veronii, A. jandaei, A. media and A. troda) depending on the genetic marker used. In this study, gyrB, rpoD, dnaJ and recA gene sequences proved to be advantageous over 16S rRNA for the identification of field Aeromonas isolates obtained from fish. However, there are discrepancies between analyses of different phylogenetic markers, indicating there are still difficulties in genetic identification of the genus Aeromonas using the housekeeping genes used in this study. Advantages and disadvantages of each housekeeping gene should be taken into account when the gene is used for identification of Aeromonas species.

Evaluation of the Diversity of Cyclodextrin-Producing Paenibacillus graminis Strains Isolated from Roots and Rhizospheres of Different Plants by Molecular Methods

  • Vollu Renata Estebanez;Fogel Rafael;Santos Silvia Cristina Cunha dos;Mota Fabio Faria da;Seldin Lucy
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.591-599
    • /
    • 2006
  • To address the diversity of cyclodextrin-producing P. graminis strains isolated from wheat roots and rhizospheres of maize and sorghum sown in Australia, Brazil, and France, restriction fragment length polymorphism analysis of part of genes encoding RNA polymerase (rpoB-RFLP) and DNA gyrase subunit B (gyrB-RFLP) was used to produce genetic fingerprints. A phylogenetic tree based on rpoB gene sequences was also constructed. The isolates originated from Brazil could be separated from those from Australia and France, when data from the rpoB-based phylogenetic tree or gyrB-RFLP were considered. These analyses also allowed the separation of all P. graminis strains studied here into four clusters; one group formed by the strains GJK201 and $RSA19^T$, second group formed by the strains MC22.02 and MC04.21, third group formed by the strains TOD61, TOD 221, TOD302, and TOD111, and forth group formed by all strains isolated from plants sown in Cerrado soil, Brazil. As this last group was formed by strains isolated from sorghum and maize sown in the same soil (Cerrado) in Brazil, our results suggest that the diversity of these P. graminis strains is more affected by the soil type than the plant from where they have been isolated.

Genetic Properties and Antimicrobial Resistance of Campylobacter jejuni Isolates from Diarrhea Patients in Gyeonggi-do (경기도내에서 분리한 캠필로박터 제주니균의 유전적특성 및 항생제내성 연구)

  • Hur, Eun-Seon;Park, Po-Hyun;Kim, Jong-Hwa;Son, Jong-Sung;Yun, Hee-Jeong;Lee, Yea-Eun;Choi, Yun-Sook;Yoon, Mi-Hye;Lee, Jong-Bok
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.228-236
    • /
    • 2013
  • Campylobacter jejuni is one of important food-borne pathogens causing human gastroenteritis. We isolated 42 strains of C. jejuni from diarrhea patients and 4 food-poisoning outbreaks in 2010, Gyeonggi-do. In this study, 42 strains were tested for genetic characteristics, the serotype distribution and antimicrobial resistant rate. The presence of hipO (100%), cdtB (100%), and mutated gyrA (95.2%) genes was detected in C. jejuni by polymerase chain reaction (PCR). Detection of mutated gyrA gene correlated with ciprofloxacin resistance. Forty isolates had mutated gyrA gene and were actually resistant to ciprofloxacin. Furthermore, comparing the gyrA DNA sequence data, ciprofloxacin-resistant isolates had a mutation of the DNA sequence from ACA (threonine) to ATA (isoleucine). But 41 strains (97.6%) of patient isolates were susceptible to erythromycin and azithromycin. A total of 35.7% among 42 C. jejuni isolates were identified into 4 different serotypes. The serotype distribution of C. jejuni strains were shown to be HS2(B), HS3(C), HS4(D), HS19(O). To investigate the genotypes of C. jejuni isolated in Gyeonggi province, repetitive sequence polymerase chain reaction (rep-PCR) analysis and SmaI-digested pulsed-filed gel electrophoresis (PFGE) profile analysis were performed. From the PFGE analysis of 42 C. jejuni strains, 12 clusters of PFGE profile were obtained. On the other hand, 11 clusters of rep-PCR profile were obtained from 42 strains of C. jejuni.

Simultaneous Detection and Identification of Bacillus cereus Group Bacteria Using Multiplex PCR

  • Park, Si-Hong;Kim, Hyun-Joong;Kim, Jae-Hwan;Kim, Tae-Woon;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1177-1182
    • /
    • 2007
  • Bacillus cereus group bacteria share a significant degree of genetic similarity. Thus, to differentiate and identify the Bacillus cereus group efficiently, a multiplex PCR method using the gyrB and groEL genes as diagnostic markers is suggested for simultaneous detection. The assay yielded a 400 bp amplicon for the groEL gene from all the B. cereus group bacteria, and a 253 bp amplicon from B. anthracis, 475 bp amplicon from B. cereus, 299 bp amplicon from B. thuringiensis, and 604 bp amplicon from B. mycoides for the gyrB gene. No nonspecific amplicons were observed with the DNA from 29 other pathogenic bacteria. The specificity and sensitivity of the B. cereus group identification using this multiplex PCR assay were evaluated with different kinds of food samples. In conclusion, the proposed multiplex PCR is a reliable, simple, rapid, and efficient method for the simultaneous identification of B. cereus group bacteria from food samples in a single tube.

UBVI CCD Photometry of the Globular Cluster M30 (구상성단 M30의 UBVI CCD 측광연구)

  • Lee, Ho;Jeon, Young-Beom
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.557-568
    • /
    • 2006
  • We present CCD UBVI photometry for more than 10,000 stars in $20'.5{\times}20'.5$ field of the halo globular cluster M30. From a color-magnitude diagram, main sequence turnoff was obtained when $V_{TO},\;(B-V)_{TO},\;and\;(V-I)_{TO}\;are\;8.63{\pm}0.05,\;0.44{\pm}0.05\;and\;0.63{\pm}0.05$, respectively. From a (U-B)-(B-V) diagram, reddening parameter, E(B-V) equals $0.05{\pm}0.01$ and a UV color excess ${\delta}(U-B)\;is\;0.27{\pm}0.01$. The abundance is derived, where [Fe/H] equals $-2.05{\pm}0.09$ according to the photometric method and spectroscopic data. The observed luminosity function of M30 shows an excess in the number of red giants relative to the number of turnoff stars, when comparing with the predictions of canonical models. Using the Hipparcos parallaxes for subdwarfs, we estimate distance modulus, $(m-M)_o\;as\;14.75{\pm}0.12$. Using the R and R' method, we find helium abundances, Y(R) as $0.23{\pm}0.02$, Y(R') as $0.29{\pm}0.02$, respectively. Finally, the cluster' sage dispersion was deduced from 10.71 Gyr to 17 Gyr.