DOI QR코드

DOI QR Code

Relationship between Moxifloxacin Resistance Pheno- and Genotype of Moxifloxacin-Resistant Mycoplasma hominis Obtained in vitro

인위적으로 유도된 목시플로사신 내성 Mycoplasma hominis의 표현형과 유전자형의 연관성

  • Park, In-Dal (Department of Microbiology Kosin University College of Medicine) ;
  • Choi, Myung-Won (Research Institute for Antimicrobial Resistance)
  • 박인달 (고신대학교 의과대학 미생물학교실) ;
  • 최명원 (항생제 내성연구소)
  • Received : 2010.08.06
  • Accepted : 2010.10.07
  • Published : 2010.10.30

Abstract

Moxifloxacin (MF) - resistant mutants of Mycoplasma hominis (M. hominis) were generated by stepwise selection in increasing concentrations of MF, and six strains of MF resistant M. hominis mutants - M1, M4, M8, M16, M32, and M64 - in which MICs of MF were 0.5, 4, 8, 16, 32, 64 ${\mu}g$/ml, respectively, were generated. Compared to the sequence of M. hominis PG21, all mutants harbored amino acid substitutions of Arg-163 Thr in GyrA, and Pro-445 Gln in ParE. While the concentrations were getting higher, an additional amino acid substitution was found at Ser-153 Lys in GyrA (${\geq}4{\mu}g/ml$), Ser-91 Ile in ParC (${\geq}16{\mu}g/ml$), and Val-450 Phe (${\geq}64{\mu}g/ml$) in GyrB. These substitutions seem to have an impact on resistance to MF, and GyrB change was found only in the highest concentration and seems to be associated with high-level resistance to MF. This, as far as we know, is the first description of a relationship between MF resistance phenotype and genotype.

본 연구에서는 QRDRs의 유전자 돌연변이와 목시플로사신의 농도와의 관계를 알아보기 위하여 목시플로사신의 농도를 단계적으로 높여가며 Mycoplasma hominis (M. hominis)에 작용시켜 목시플로사신에 내성을 갖는 균주 6주(M1, M4, M8, M16, M32, M64)를 만들었고, 이 돌연변이주들의 MIC는 각각 0.5, 4, 8, 16, 32, 64 ${\mu}g$/ml이었다. 이 균들의 염기서열을 분석하였더니 모든 돌연변이주들에서 Arg163Thr (GyrA), Pro445Gln (ParE) 아미노산 치환이 관찰 되었고, 목시플로사신의 농도가 높아질수록 Ser153Lys (GyrA, ${\geq}4{\mu}g$/ml), Ser91Ile (ParC, ${\geq}16{\mu}g/ml$), Val450Phe (GyrB, ${\geq}64{\mu}g/ml$) 등과 같은 아미노산의 치환이 추가로 관찰되었다. 이러한 아미노산의 치환이 목시플로사신의 내성과 연관이 있는 것으로 생각되며, 특히 GyrB 단백질의 아미노산 치환은 목시플로사신의 고도 내성과 연관이 있는 것으로 생각된다.

Keywords

References

  1. Bebear, C. M., H. Renaudin, A. Charron, M. Clerc, S. Pereyre, and C. Bebear. 2003. DNA gyrase and topoisomerase IV mutations in clinical isolates of Ureaplasma spp. and Mycoplasma hominis resistant to fluoroquinolones. Antimicrob. Agents Chemother. 47, 3323-3325. https://doi.org/10.1128/AAC.47.10.3323-3325.2003
  2. Brenclaglia, M. I., P. Cipriani, and C. Mancini. 1975. Antimicrobial activity of aminoglycosides against clinical strains of Mycoplasma hominis. J. Antimicrob. Chemother. 1, 333-336. https://doi.org/10.1093/jac/1.3.333
  3. Cassel, G. H. and K. B. Waites. 1989. Venereal mycoplasmal infections, In Hoeprich, P. D., and M. C. Jordan, (eds.), Infectious diseases, a modern treatise of infectious processes. J. B. Lippincott Company, Philadelphia.
  4. Cassel, G. H. and K. B. Waites, and D. T. Crouse. 1991. Perinatal mycoplasmal infections. Clin. Perinatol. 18, 241-262
  5. Cullen, M. E., A. W. Wyke, R. Kuroda, L. M. Fisher. 1989. Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to 4-quinolones. Antimicrob. Agents Chemother. 33, 886-894. https://doi.org/10.1128/AAC.33.6.886
  6. Drudy, D., T. Quinn, R. O'Mahony, L. Kyne, P. Ó'Gaora, and S. Fanning. 2006. High-level resistance to moxifloxacin and gatifloxacin associated with a novel mutation in gyrB in toxin-A-negative, toxin-B-positive Clostridium difficile. Antimicrob. Agents Chemother. 58, 1264-1267. https://doi.org/10.1093/jac/dkl398
  7. Dybvig, K. and L. L. Voelker. 1996. Molecular biology of mycoplasmas. Annu. Rev. Microbiol. 50, 25-57. https://doi.org/10.1146/annurev.micro.50.1.25
  8. Gruson, D., S. Pereyre, H. Renaudin, A. Charron, C. Bebear, and C. M. Bebear. 2005. In vitro development of resistance to six and four fluoroquinolones in Mycoplasma pneumoniae and Mycoplasma hominis, respectively. Antimicrob. Agents Chemother. 49, 1190-1193. https://doi.org/10.1128/AAC.49.3.1190-1193.2005
  9. Houssaye, S., L. Gutmann, and E. Varon. 2002. Topoisomerase mutations associated with in vitro selection of resistance to moxifloxacin in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 46, 2712-2715. https://doi.org/10.1128/AAC.46.8.2712-2715.2002
  10. Kenny, G. E., P. A. Young, F. D. Cartwright, K. E. Sjostrom, and W. M. Huang. 1999. Sparfloxacin selects gyrase mutations in first-step Mycoplasma hominis mutants, whereas ofloxacin selects topoisonmerase IV mutations. Antimicrob. Agents Chemother. 43, 2493-2496.
  11. Kim, E. C., P. Charukamnoetkanok, A. M. Poothullil, B. Paton, and R. I. Pineda. 2005. Second, third, and fourth generation fluoroquinolone susceptibilities of methacillin resistant staph aureus (MRSA) cultures collected at the Massachusetts Eye and Ear Infirmary. Invest. Ophthalmol. Vis. Sci. 46, E-Abstract 2770.
  12. Madoff, S. and D. C. Hooper. 1988. Nongenitourinary infections caused by Mycoplasma hominis in adults. Rev. Infect. Dis. 10, 602-613. https://doi.org/10.1093/clinids/10.3.602
  13. McMahon, D. K., J. S. Dummer, A. W. Pasculle, and G. H. Cassel. 1990. Extragenital Mycoplasma hominis infections in adults. Am. J. Med. 89, 275-281. https://doi.org/10.1016/0002-9343(90)90338-E
  14. Pan, X. S., J. Ambler, S. Mehttar, and L. M. Fisher. 1996. Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 40, 2321-2326.
  15. Pestova, E., J. J. Millichap, G. A. Noskin, and L. R. Peterson. 2000. Intracellular targets of moxifloxacin: a comparison with other fluoroquinolones. J. Antimicrob. Chemother. 45, 583-590. https://doi.org/10.1093/jac/45.5.583
  16. Pollack, J. D. 1992. Carbohydrate metabolism and energy conservation, In Maniloff, J., R. N. McElhaney, L. R. Finch, and J. B. Baseman (eds.), Mycoplasmas: Molecular biology and pathogenesis. pp. 181-200, American Society for Microbiology, Washington, D.C.
  17. Raherison, S., P. Gonzalez, H. Renaudin, A. Charron, C. Bebear, and C. M. Bebear. 2002. Evidence of active efflux in resistance to ciprofloxacin and to ethidium bromide by Mycoplasma hominis. Antimicrob. Agents Chemother. 46, 672-679. https://doi.org/10.1128/AAC.46.3.672-679.2002
  18. Reece, R. and A. Maxwell. 1991. DNA gyrase: structure and function. Crit. Rev. Biochem. Mol. Biol. 26, 335-375. https://doi.org/10.3109/10409239109114072
  19. Walkty, A., D. A. Boyd, D. Gravel, J. Hutchinson, A. McGeer, D. Moore, A. Simor, K. Suh, G. Taylor, M. Miller, and M. R. Mulvey. 2010. Molecular characterization of moxifloxacin resistance from Canadian Clostridium difficile clinical isolates. Diagn. Microbiol. Infect. Dis. 66, 419-424. https://doi.org/10.1016/j.diagmicrobio.2009.12.002
  20. Yoshida, H., M. Bogaki, M. Nakamura, L. M. Yamanaka, and S. Nakamura. 1991. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob. Agents Chemother. 35, 1647-1650. https://doi.org/10.1128/AAC.35.8.1647
  21. Yoshida, H., M. Bogaki, M. Nakamura, and S. Nakamura. 1990. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34, 1271-1272.