• Title/Summary/Keyword: growth factor protein

Search Result 1,304, Processing Time 0.029 seconds

Development of an aequorin-based assay for the screening of corticotropin-releasing factor receptor antagonists (CRF1 길항제 스크리닝을 위한 에쿼린 기반 세포실험 개발연구)

  • Noh, Hyojin;Lee, Sunghou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7575-7581
    • /
    • 2015
  • Corticotropin-releasing factor(CRF), one of the stress driven neuropeptides, was widely proposed to influence hair loss and re-growth. For the development of receptor antagonists, the screening system based on intracellular calcium signal process was developed and optimized. The aequorin parental cells were transfected with CRF1 receptor and alpha 16 promiscuous G protein cDNA to establish HEK293a16/hCRF1, a stable cell line for the human CRF1 receptor. In HEK293a16/hCRF1 cells, the range of sauvagine dose response was 12-fold higher($EC_{50}:15.21{\pm}1.83nM$) than in the transiently expressed cells, hence essential conditions for the antagonist screening experiments such as the robust signals and high solvent tolerance were secured. The standard antagonists for the CRF1 receptor, antalarmin and CP154526, resulted $IC_{50}$ values of $414.1{\pm}5.5$ and $290.7{\pm}1.9nM$, respectively. Similar results were presented with frozen HEK293a16/hCRF1 cells. Finally, our HEK293a16/hCRF1 cells with the aequorin based cellular functional assay can be a model system for the development of functional cosmetics and modulators that can have a clinical efficacy on hair re-growth.

The enhancing effect of Acanthopanax sessiliflorus fruit extract on the antibacterial activity of porcine alveolar 3D4/31 macrophages via nuclear factor kappa B1 and lipid metabolism regulation

  • Hwang, Eunmi;Kim, Gye Won;Song, Ki Duk;Lee, Hak-Kyo;Kim, Sung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1776-1788
    • /
    • 2019
  • Objective: The demands for measures to improve disease resistance and productivity of livestock are increasing, as most countries prohibit the addition of antibiotics to feed. This study therefore aimed to uncover functional feed additives to help enhance livestock immunity and disease resistance, using Acanthopanax sessiliflorus fruit extract (ASF). Methods: ASF was extracted with 70% EtOH, and total polyphenolic and catechin contents were measured by the Folin-Ciocalteu and vanillin assay, respectively. The 3D4/31 porcine macrophage cells ($M{\Phi}$) were activated by phorbol 12-myristate 13-acetate (PMA), and cell survival and growth rate were measured with or without ASF treatment. Flow-cytometric analysis determined the lysosomal activity, reactive oxygen species levels (ROS), and cell cycle distribution. Nuclear factor kappa B ($NF-{\kappa}B$) and superoxide dismutase (SOD) protein expression levels were quantified by western blotting and densitometry analysis. Quantitative polymerase chain reaction was applied to measure the lipid metabolism-related genes expression level. Lastly, the antibacterial activity of 3D4/31 $M{\Phi}$ cells was evaluated by the colony forming unit assay. Results: ASF upregulated the cell viability and growth rate of 3D4/31 $M{\Phi}$, with or without PMA activation. Moreover, lysosomal activity and intracellular ROS levels were increased after ASF exposure. In addition, the antioxidant enzyme SOD2 expression levels were proportionately increased with ROS levels. Both ASF and PMA treatment resulted in upregulation of $NF-{\kappa}B$ protein, tumor necrosis factor $(TNF){\alpha}$ mRNA expression levels, lipid synthesis, and fatty acid oxidation metabolism. Interestingly, co-treatment of ASF with PMA resulted in recovery of $NF-{\kappa}B$, $TNF{\alpha}$, and lipid metabolism levels. Finally, ASF pretreatment enhanced the in vitro bactericidal activity of 3D4/31 $M{\Phi}$ against Escherichia coli. Conclusion: This study provides a novel insight into the regulation of $NF-{\kappa}B$ activity and lipid metabolism in $M{\Phi}$, and we anticipate that ASF has the potential to be effective as a feed additive to enhance livestock immunity.

Skin Care Effects of Green Tea (녹차의 피부보호효과)

  • Lee, Byeong-Gon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.311-321
    • /
    • 2005
  • Tea (Camellia sinenis) is a popular beverage consumed worldwide. Since green tea, mainly consumed in Asia, has various biological activities, green tea components became one of the most favorite candidates as a functional materials for cosmetics and functional foods. The biological activities of green tea for skin cue have been ranged from protection of epidermal cells to the stimulation of extracellular matrix (ECM) biosynthesis. Green tea polyphenols (GTPs), which are active ingredients of green tea, possess anti-inflammatory, anti-carcinogenic and immune potentiation properties as well as antioxidant. They also modulate intracellular signal transduction pathways. GTPs decrease ultraviolet (UV)-induced oxidative stress, thus suppress mitogen-activated protein kinase (MAPK) pathway and apoptosis in keratinocytes. In addition, GTPs prevent the Induction of inflammatory mediators, such as cyclooxygenase-2 (COX-2), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) by tumor necrosis factor alpha $(TNF{\alpha})$ or chemical treatment in keratinocytes. GTPs treatment protects from chemical-or UV-induced skin tumor incidence in animal experiment. Besides, GTPs stimulate keratinocyte differentiation and proliferation of normal and aged epidermal cells, resectively, and suppress matrix metalloproteinases (MMPs) release. According to the progress of formulation study, green tea components will be guaranteed materials for the more effective skin cue products.

A putative prolyl tRNA synthetase is involved in pheromone induction in Schizosaccharomyces pombe (Schizosaccharomyces pombe의 pheromone 유도와 연관된 prolyl tRNA synthetase)

  • Kim, Daemyung
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.309-319
    • /
    • 2018
  • Previously, six Schizosaccharomyce pombe mutants that induce pheromone even in the presence of nitrogen source were isolated from a bank of temperature sensitive mutants. In this report, one of these mutants, pws6 was further characterized. The pheromone induction in pws6 mutant cells was specific to nutrient: the M-factor pheromone was induced without nitrogen starvation but not without glucose starvation. This result suggests that the pws6 mutant might have a specific defect in the pathway for nitrogen starvation. The pws6 mutant induces P-factor pheromone as well as M-factor without starvation of nitrogen in temperature sensitive mode, suggesting that the pheromone induction phenotype of pws6 mutation is not cell-type specific. From cloning of the $pws6^+$ gene by complementation of the temperature sensitive growth defect, three plasmids containing 8.1 kb, 3.3 kb, and 4.8 kb yeast DNA were recovered. These plasmids complement the growth defect of the pws6 mutant by 100%, 70%, and 10~20%, respectively. The abilities of these plasmids to complement pheromone induction phenotype of pws6 mutant cells were correlated well with the efficiencies of complementation of the growth defect. With comparison of their open reading frames to the complementation efficiencies, it is concluded that the open reading frame, SPBC19C7.06 is responsible for the complementation of temperature sensitive phenotype of the pws6 mutant. This open reading frame, named prs1, contains one long exon with no intron and encodes a putative prolyl tRNA synthetase. The putative Prs1 protein exhibits significant similarities to the prolyl tRNA synthetases of other species.

Effects of Gonadal Steroid Hormones on Growth Efficiency, Carcass Characteristics and Circulating Concentrations of Insulin-like Growth Factor(IGF)-I and LGF-binding Protein-3 in Finishing Barrows (거세비육돈에서 성선스테로이드호르몬이 성장효율, 도체 특성 및 혈중 Insulin-like Growth Factor(IGF)-I 및 IGF-Binding Protein-3 농도에 미치는 영향)

  • Lee C.Y.;Ha S.H.;Lee H.P.;Baik K.H.;Jin S.K.;Sohn S.H.;Park M.J.
    • Proceedings of the KSAR Conference
    • /
    • 2005.06a
    • /
    • pp.47-54
    • /
    • 2005
  • In boars, unlike the cases in males of other species, gonadal hormones suppress voluntary feed intake. for this reason, barrows, compared with gilts or boars, eat too much feed resulting in excessive fat deposition. Two experiments were performed in the present study to investigate the effects of implantation of Revalor H[Experiment(Exp.) I: 140mg trenbolone acetate(a synthetic androgen) + 14mg estradiol-$17\beta(E_{2}\beta)$] and Compudose(Exp. II; 24mg $E_{2}\beta$) on growth efficiency, carcass characteristics and circulating concentrations of IGF-I and IGF-binding protein-3(IGFBP-3). In Exp. I, sixty-four cross-bred finishing barrows weighing approximately 60kg were randomly divided into eight pens under a 2[control vs Revalor implant] $\times$ 2(ad libitum vs $80\%$ ad libitum feeding) $\times$2[control($103\%$ NRC-recommended level) vs low-energy($87\%$ NRC recommendation) diet] arrangement of treatments. In Exp. II, effects of Compudose were studied using 80 finishing barrows(10 animals/pen). In both Exps., all the animals were slaughtered at 100- to 110-kg body weight. Both Revalor and Compudose implants caused a decrease in feed intake and backfat thickness without affecting major physicochemical characteristics of the carcass and an increase in circulating IGF-I concentration. Moreover, Revalor implant exhibited greater effects than restricted feeding, low-energy diet, or Compudose in these variables. In addition, Revalor implantation suppressed weight gain, but enhanced the feed efficiency without exhibiting any interaction with the diet or feeding. In summary, results suggest that 1) both androgen and estrogen suppress voluntary feed intake and backfat deposition and enhance IGF-I secretion and 2) these effects of the gonadal steroid hormones in growth are likely to be mediated, in part, by IGF-I in finishing barrows.

  • PDF

MOLECULAR BIOLOGY IN DENTAL IMPLANT (치과 임플란트에서의 분자생물학적 연구)

  • Jee, Yu-Jin;Ryu, Dong-Mok;Lee, Deok-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.6
    • /
    • pp.616-621
    • /
    • 2008
  • Osseointegration is a result of bone formation and bone regeneration processes, which takes place at the interface between bone and implant, and it indicates a rigid fixation that can be stably maintained while functional loading is applied inside the oral cavity as well as after implant placement. Although many researches were carried out about osseointegration mechanism, but cellular and molecular events have not been clarified. With recent development of molecular biology, some researches have examined biological determinants, such as cytokine, growth factors, bone matrix proteins, during osseointegration between bone and implant surface, other researches attempted to study the ways to increase bone formation by adhering protein to implant surface or by inserting growth factors during implant placement. Cellular research on the reaction of osteoblast especially to surface morphology (e.g. increased roughness) has been carried out and found that the surface roughness of titanium implant affects the growth of osteoblast, cytokine formation and mineralization. While molecular biological research in dental implant is burgeoning. Yet, its results are insignificant. We have been studying the roles of growth factors during osseointegration, comparing different manifestations of growth factors by studying the effect of osseointegration that varied by implant surface. Of many growth factors, $TGF-{\beta}$, IGF-I, BMP2, and BMP4, which plays a significant role in bone formation, were selected, and examined if these growth factors are manifested during osseointegration. The purpose of this article is to present result of our researches and encourage molecular researches in dental implant.

Effects of Soil Moisture Stress at Different Growth Stage on Growth, Yield and Quality in Rice

  • Park, Hong-Kyu;Choi, Weon-Young;Kang, Si-Yong;Kim, Young-Doo;Choi, Won-Yul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.143-148
    • /
    • 1999
  • Soil moisture condition is an important limiting factor in growth and yield in rice culture. The purpose of this study was to compare the influence on the growth, yield and Quality of rice subjected to soil moisture stress (SMS) at different growth stages. Ajaponica rice cultivar, Dongjinbyeo, was cultured under flooded conditions in a plastic container filled with silty loam soil. The container was subjected to SMS until the initial wilting point (IWP) coincided with about 10% in soil moisture content and about-200 kPa in soil matric potential, and was then irrigated again, at 6 and 5 of main growth stage in 1996 and 1997, respectively. At maturity, the plant height, tiller number, leaf area and top dry weight were decreased more in SMS treatments at the early stage than the late stage. The averaged yield index of SMS to control in both years was lowest at meiosis (62.5%), which primarily resulted from lower percent ripened grain and 1,000 grain weight, and second' reduced the spikelet number per panicle and panicle number per hill, and followed at tillering stage (68.5%) which resulted from the lower production in tiller number and top dry matter during and after SMS treatment. The percent-age of read rice in SMS plants varied with the treatment stage as order of lower at meiosis (44.0%), heading (53.9%), panicle initiation (70.1%), tillering (72.1%), ripening (75.8%) and 5 days after transplanting (DAT) (79.0%). Protein content in brown rice was slightly larger in SMS at late growth stage than the control, while the contents of fat and ash differed very little between SMS and control. Contents of Mg and K and Mg/K in brown rice with SMS were lower at some treatment stages such as at ripening or panicle initiation.

  • PDF

Synergism Induced by Combination of Farnesyl Transferase Inhibitor SCH66336 and Insulin like-Growth Factor Binding Protein-3 in apoptosis of Non-Small Cell Lung Cancer Cell lines (비소세포성 폐암 세포주에서 Farnesyl Transferase Inhibitor SCH66336과 인슐린양 성장 인자 결합 단백-3의 병용처리에 의한 세포고사 상승 작용)

  • Kim, Young;Kim, Se Kyu;Kim, Hyung Jung;Chang, Joon;Ahn, Chul Min;Kim, Sung Kyu;Chang, Yoon Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.120-128
    • /
    • 2005
  • Background : Insulin-like growth factor binding protein (IGFBP)-3 regulates non-small cell lung cancer(NSCLC) cell proliferation in vitro and in vivo by inhibiting IGF-mediated signaling pathways. To have better strategies for the treatment of lung cancer, we analyzed the combining effects of adenovirus expressing IGFBP-3 (Ad5CMV-BP3) and SCH66336, a farnesyl transferase inhibitor (FTI) designed to block Ras-mediated proliferative signaling pathways. Methods : To measure the combining effects of Ad5CMV-BP3 and SCH66336 on the proliferation of NSCLC cells, human NSCLC cell lines (H1299, H596, A549, H460, and H358), SCH66336, recombinant adenovirus expressing IGFBP-3 (Ad5CMV-BP3) and athymic nude mice were used in these experiments. Results : The combination of Ad5CMV-BP3 and SCH66336 produced a synergistic enhancement in antiproliferative effects over a range of clinically achievable concentrations in a variety of NSCLC cell lines. Furthermore, we observed a significant reduction in growth of NSCLC xenograft induced in athymic nude mice. Conclusion : In conclusion, this study demonstrated for the first time that the FTI SCH66336 synergizes with IGFBP-3 and enhances its apoptotic activity in NSCLC cells in vitro and in vivo. The combined treatment of Ad5CMV-BP3 and SCH66336 raises the possibility of using this regimen in clinic for the treatment of NSCLC.

The Regulation of Insulin-Like Growth (IGF) Factors and IGF Binding Proteins by High Glucose in Mesangial Cells

  • Park Soo-hyun
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • It has been reported that glomerulosclerosis mediated by the dysfunction of mesangial cells and insulin-like growth factors (IGFs) are associated with the development of diabetic nephropathy. However, it is not yet known the effect of high glucose on IGF-I, -II secretion, IGF-I receptor, and IGFBPs expression in the mesangial cells. Thus, this study was conducted to examine the effect of high glucose on IGF system and its involvement of protein kinase C (PKC) and oxidative stress in mesangial cells. In this study, high glucose (25 mM) increased IGF-I and IGF-II secretion and mRNA expression (P<0.05), which was blocked by PKC inhibitor (staurosporine, 10/sup -8/ M) and antioxidant (N-acetyl cystein, 10/sup -5/ M). High glucose decreased IGFBP-1 and -2 expression but increased IGFBP-5 expression. These alteration of IGFBPs by high glucose was also prevented by staurosporine and NAC, suggesting the role of PKC and oxidative stress. Indeed, high glucose increased PKC activity. Furthermore, high glucose-induced increase of lipid peroxide (LPO) formation was blocked by PKC inhibitors. In conclusion, high glucose alters IGF system via PKC-oxidative pathways in mesangial cells.

  • PDF

Rumen Manipulation to Improve Animal Productivity

  • Santra, A.;Karim, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.748-763
    • /
    • 2003
  • Anaerobic rumen microorganisms mainly bacteria, protozoa and fungi degrade ligno-cellulosic feeds consumed by the ruminants. The ruminants in developing countries are predominantly maintained on low grade roughage and grazing on degraded range land resulting in their poor nutrient utilization and productivity. Hence, manipulation of rumen fermentation was tried during last two decades to optimize ruminal fermentation for improving nutrient utilization and productivity of the animals. Modification of rumen microbial composition and their activity was attempted by using chemical additives those selectively effect rumen microbes, introduction of naturally occurring or genetically modified foreign microbes into the rumen and genetically manipulation of existing microbes in the rumen ecosystem. Accordingly, rumen protozoa were eliminated by defaunation for reducing ruminal methane production and increasing protein outflow in the intestine, resulting in improve growth and feed conversion efficiency of the animals. Further, Interspecies trans-inoculation of rumen microbes was also successfully used for annulment of dietary toxic factor. Additionally, probiotics of bacterial and yeast origin have been used in animal feeding to stabilize rumen fermentation, reduced incidence of diarrhoea and thus improving growth and feed conversion efficiency of young stalk. It is envisaged that genetic manipulation of rumen microorganisms has enormous research potential in developing countries. In view of feed resource availability more emphasis has to be given for manipulating rumen fermentation to increase cellulolytic activity for efficient utilization of low grade roughage.