Skin Care Effects of Green Tea

녹차의 피부보호효과

  • 이병곤 (태평양기술연구원 피부과학연구소)
  • Published : 2005.12.31

Abstract

Tea (Camellia sinenis) is a popular beverage consumed worldwide. Since green tea, mainly consumed in Asia, has various biological activities, green tea components became one of the most favorite candidates as a functional materials for cosmetics and functional foods. The biological activities of green tea for skin cue have been ranged from protection of epidermal cells to the stimulation of extracellular matrix (ECM) biosynthesis. Green tea polyphenols (GTPs), which are active ingredients of green tea, possess anti-inflammatory, anti-carcinogenic and immune potentiation properties as well as antioxidant. They also modulate intracellular signal transduction pathways. GTPs decrease ultraviolet (UV)-induced oxidative stress, thus suppress mitogen-activated protein kinase (MAPK) pathway and apoptosis in keratinocytes. In addition, GTPs prevent the Induction of inflammatory mediators, such as cyclooxygenase-2 (COX-2), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) by tumor necrosis factor alpha $(TNF{\alpha})$ or chemical treatment in keratinocytes. GTPs treatment protects from chemical-or UV-induced skin tumor incidence in animal experiment. Besides, GTPs stimulate keratinocyte differentiation and proliferation of normal and aged epidermal cells, resectively, and suppress matrix metalloproteinases (MMPs) release. According to the progress of formulation study, green tea components will be guaranteed materials for the more effective skin cue products.

차(Camellia sinensis)는 세계적으로 애용되는 음료이다. 그 중, 아시아권에서 주로 소비되는 녹차는 다양한 생리활성을 가지고 있어 화장품, 기능성식품을 위한 기능성 소재로서 선호되고 있다. 녹차의 피부에 대한 활성은 세포보호에서부터 피부 기질 단백질의 합성까지 다양하게 나타난다. 녹차 폴리페놀(green tea polyphenols; GTPs)은 활성을 나타내는 주성분으로서 항산화 활성 이외에 항암, 항염증, 피부면역능 저하방지활성 등을 보이며, 세포내 신호전달 경로에도 관여한다 GTPs는 표피각질형성세포에서 자외선 조사에 의한 산화 스트레스를 감소시키고, 그에 따르는 mitogen-activated protein kinase (MAPK) 신호전달과 세포사멸을 억제한다. 또한, 같은 세포에서 tumor necrosis factor alpha $(TNF{\alpha})$나 다른 화학물질에 의해 cyclooxygenase-2(COX-2), interleukin-8 (IL-8) 및 vascular endothelial growth factor (VEGF) 같은 염증매개물질이 유발되는 것을 막아준다. 또한, GTPs는 등물실험에서 화학물질이나 자외선에 의한 피부암의 발생도 억제하는데, 경구투여 외에 경피투여로도 효과가 있었다. 피부보호작용 이외에도 GTPs는 각질형성세포의 분화촉진, 노화된 피부세포의 증식능 회복, 피부기질단백질의 분해억제 등의 기능이 있으며, 피부세포에서의 기질단백질 생합성을 직접적으로 촉진하기도 한다. 녹차성분이 보이는 이러한 피부에 대한 활성은, 제형 측면에서의 연구가 진행되어 감에 따라 보다 효과적인 피부를 위한 소재로서의 사용 가능성을 더욱 높여주고 있다.

Keywords

References

  1. I. A. Siddiqui, F. Afaq, V. M. Aclhami, N. Ahmad, and H. Mukhtar, Antioxidants of the beverage tea in promotion of human health, Antioxid & Redox Signal, 6(3), 571 (2004) https://doi.org/10.1089/152308604773934323
  2. A functional food produS. J. Bell and G. K. Goodrick, ct for the management of weight, Crit Rev Food Sci Nutr., 42(2), 163 (2002) https://doi.org/10.1080/10408690290825501
  3. M. Sano, M. Suzuki, T. Miyase, K. Yoshino, and M. Maeda-Yamamoto, Novel antiallergic catechin derivatives isolated from oolong tea, J. Agric. Food Chem., 47(5), 1906 (1999) https://doi.org/10.1021/jf981114l
  4. S. Hsu, Green tea and the skin, J. Am. Acad Dermatol., 52, 1049 (2005)
  5. Z. D. Draelos, Botanicals as topical agents, Clin. Dermatol, 19, 474 (2001) https://doi.org/10.1016/S0738-081X(00)00199-1
  6. A. Chiu and A. B. Kimball, Topical vitamins, minerals and botanical ingredients as modulators of environmental and chronological skin damage, Br. J. Dermatol, 149, 681 (2003) https://doi.org/10.1046/j.1365-2133.2003.05540.x
  7. N. Ahmad and H. Mukhtar, Cutaneous photochemoprotection by green tea: a brief review, Skin Pharmacol. Appl. Skin Physiol., 14, 69 (2001) https://doi.org/10.1159/000056336
  8. H. Mukhtar, S. K. Katiyar, and R. Agarwal, Green tea and skin anticarcinogenic effects, J. Invest. Dermatol, 102, 3 (1994) https://doi.org/10.1111/1523-1747.ep12384292
  9. Z. Y. Wang, M. T. Huang, T. Ferraro, C. Q. Wong, Y. R. Lou, and K. Reuhl, Inhibitory effect of green tea in the drinking water on tumorigenesis by ultraviolet light and 12-O-tetradecanoylphorbol-13-acetate in the skin of SKH-1 mice, Cancer. Res., 52, 1162 (1992)
  10. Y. Hara, Green tea-health benefits and application, Food science and technology, 106, 22, Marcel Dekker, Inc., New York (2001)
  11. S. K. Katiyar, N. Ahmad, and H. Mukhtar, Green tea and skin, Arch. Dermatol, 136, 989 (2000) https://doi.org/10.1001/archderm.136.8.989
  12. S. K. Katiyar and C. A. Elmets, Green tea polyphenolic antioxidants and skin photoprotection, Int. J. Oncol., 18, 1307 (2001)
  13. S. Hsu, W. B. Bollag, J. Lewis, Q. Huang, B. Singh and M. Sharawy, Green tea polyphenols induce differentiation and proliferation in epidermal keratinocytes, J. Pharmacal. Exp. Ther., 306, 29 (2003) https://doi.org/10.1124/jpet.103.049734
  14. Y. Kuroda and Y. Hara, Antimutagenic and anticarcinogenic activity of tea polyphenols, Mutat. Res., 436, 69 (1999) https://doi.org/10.1016/S1383-5742(98)00019-2
  15. H. Mukhtar and N. Ahmad, Tea polyphenols: prevention of cancer and optimizing health, Am. J. Clin. Nutr., 71 (Suppl), 1698S (2000)
  16. C. S. Yang, P. Maliakal, and X. Meng, Inhibition of carcinogenesis by tea, Annu. Rev. Pharmacol. Toxicol., 42, 25 (2002) https://doi.org/10.1146/annurev.pharmtox.42.082101.154309
  17. 村松敬一朗, 茶の 科學, 朝倉書店, 東京 (1991)
  18. C. A. Elmets, D. Singh, K. Tubesing, M. Matsui, S. Katiyar, and H. Mukhtar, Cutaneous photoprotection from ultraviolet injury by green tea polyphenols, J. Am. Acad. Dermatol, 44, 425 (2001) https://doi.org/10.1067/mjd.2001.112919
  19. S. K. Katiyar, M. S. Matsui, C. A. Elmets, and H. Mukhtar, Polyphenolic antioxidant (- )-epigallocatechin -3-gallate from green tea reduces UVB-induced inflammatory responses and infiltration of leukocytes in human skin, Photochem Photobiol, 69, 148 (1999)
  20. K. Rutter, D. R. Sell, N. Fraser, M. Obrenovich, M. Zito, and P. Starke-Reed, Green tea extract suppresses the age-related increase in collagen crosslinking and fluorescent products in C57BL/6 mice, Int. J. Vitam. Nutr. Res., 73, 453 (2003) https://doi.org/10.1024/0300-9831.73.6.453
  21. S. H. Kim, S. R. Kim, H. J. Lee, H. Oh, S. Y. Ryu, and Y. S. Lee, Apoptosis in growing hair follicles following gamma-irradiation and application for the evaluation of radioprotective agents, In Vivo, 17, 211 (2003)
  22. H. Kondo, S. H. Park, K Watanabe, Y. Yamamoto, and M. Akashi, Polyphenol (-)-epigallocatechin gallate inhibits apoptosis induced by irradiation in human HaCaT keratinocytes, Biochem. Biophys. Res. Commun., 316, 59 (2004) https://doi.org/10.1016/j.bbrc.2004.01.175
  23. P. K Vayalil, C. A. Elmets, and S. K. Katiyar, Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin, Carcinogenesis, 24, 97:7 (2003) https://doi.org/10.1093/carcin/24.1.7
  24. F. Afaq, N. Ahmad, and H. Mukhtar, Suppression of UVB-induced phosphorylation of mitogen-activated protein kinases and nuclear factor kappa B by green tea polyphenol in SKH-1 hairless mice, Oncogene, 22, 9254 (2003) https://doi.org/10.1038/sj.onc.1207035
  25. R. Agarwal, S. K. Katiyar, S. G. Khan, and H. Mukhtar, Protection against ultraviolet B radiationinduced effects in the skin of SKH-1 hairless mice by a polyphenolic fraction isolated from green tea, Photochem Photobiol, 58, 695 (1993) https://doi.org/10.1111/j.1751-1097.1993.tb04954.x
  26. B. Frei and J. V. Higdon, Antioxidant activity of tea polyphenols in vivo: evidence from animal studies, J. Nutr., 133 (Suppl) , 3275S (2003)
  27. Y. C. Fu, X. P. Jin, S. M. Wei, H. F. Lin, and S. Kacew, Ultraviolet radiation and reactive oxygen generation as inducers of keratinocyte apoptosis: protective role of tea polyphenols, J. Toxicol. Environ Health A., 61, 177 (2000) https://doi.org/10.1080/00984100050131323
  28. Y. C. Fu, X. P. Jin, and S. M. Wei, The effects on cell growth of tea polyphenols acting as a strong anti-peroxidatant and an inhibitor of apoptosis in primary cultured rat skin cells, Biomed. Environ. Sci., 13, 170 (2000)
  29. K T. Tran, L. Griffith, A. Wells, Extracellular matrix signaling through growth factor receptors during wound healing, Wound Repair Regen, 12(3), 262 (2004) https://doi.org/10.1111/j.1067-1927.2004.012302.x
  30. L. W. Toy, Matrix metalloproteinases: their function in tissue repair, J. Wound. Care., 14(1), 20 (2005) https://doi.org/10.12968/jowc.2005.14.1.26720
  31. W.Li, J.Fan, M. Chen, and D. T. Woodley, Mechanisms of human skin cell motility, Histol Histopathol, 19(4), 1311 (2004)
  32. B. Eckes and T. Krieg, Regulation of connective tissue homeostasis in the skin by mechanical forces, Clin Expl Rheumatol, 22(3 Suppl 33), S73 (2004)
  33. K. K. Nelson and J. A. Melendez, Mitochondrial redox contro of matrix metalloproteinases, Free. Radic. BioI. Med., 37(6), 768 (2004) https://doi.org/10.1016/j.freeradbiomed.2004.06.008
  34. P. K. Vayalil, A. Mittal, Y. Hara, C. A. Elmets, and S. K. Katiyar, Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin, J. Invest. Dermatol., 122, 1480 (2004) https://doi.org/10.1111/j.0022-202X.2004.22622.x
  35. X. Song, J. Xia, and Z. Bi, Effects of (- )-epigallocatechin-3-gallate on expression of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in fibroblasts irradiated with ultraviolet A, Chin. Med. J., 117(12), 1838 (2004)
  36. J. H. Lee, J. H. Chung, and K. H. Cho, The effects of epigallocatechin-3-gallate on extracellular matrix metabolism, J. Dermatol. Sci., (In Press) (2005)
  37. X. W. Cheng, M. Kuzuya, S. Kanda, K Maeda, T. Sasaki, Q. L. Wang, N. Tamaya-Mori, T. Shibata, and A. Iguchi, Epigallocatechin-3-gallate binding to MMP-2 inhibics gelatinolytic activity without influencing the attachment to extracellular matrix proteins but enhances MMP-2 binding to TIMP-2, Arch. Biochem. Biophys., 415, 126 (2003) https://doi.org/10.1016/S0003-9861(03)00221-2
  38. N. Oku, M. Matsukawa, S. Yamakawa, T. Asai, S. Yahara, F. Hashimoto, and T. Akizawa, Inhibitory effect of green tea polyphenols on membrane-type 1 matrix metalloproteinase, MT1-MMP, Biol. Pharm. Bull., 26(9), 1235 (2003) https://doi.org/10.1248/bpb.26.1235
  39. J. El Bedoui, M. H. Oak, P. Anglard, and V. B. Schini - Kerth, Catechin prevent vascular smooth muscle cell invasion by inhibiting MT1-MMP activity and MMP-2 expression, Cardiovasc Res., 67, 317 (2005) https://doi.org/10.1016/j.cardiores.2005.03.017
  40. American Cancer Society, Cancer facts and figures 2002, American Cancer Society, Atlanta (2002)
  41. W. A. Khan, Z. Y. Wang, M. Athar, D. R. Bickers, and H. Mukhtar, Inhibition of the skin tumorigenicity of (+/-)-7 beta,8 alpha-dihydroxy-S alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene by tannic acid, green tea polyphenols and quercetin in Sencar mice, Cancer Lett., 42, 7 (1988) https://doi.org/10.1016/0304-3835(88)90232-7
  42. Z. Y. Wang, W. A. Khan, D. R. Bickers, and H. Mukhtar, Protection against polycyclic aromatic hydrocarbon-induced skin tumor initiation in mice by green tea polyphenols, Carcinogenesis, 10, 411 (1989) https://doi.org/10.1093/carcin/10.2.411
  43. R. J. Ruch, S. J. Cheng, and J. E. Klaunig, Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea, Carcinogenesis, 10, 1003 (1989) https://doi.org/10.1093/carcin/10.6.1003
  44. S. K. Katiyar, R. Agarwal, Z. Y. Wang, A. K. Bhatia, and H. Mukhtar, (- )-Epigallocatechin-3-gallate in Camellia sinensis leaves from Himalayan region of Sikkim: inhibitory effects against biochemical events and tumor initiation in Sencar mouse skin, Nutr. Cancer., 18, 73 (1992) https://doi.org/10.1080/01635589209514207
  45. Z. Y. Wang, R. Agarwal, D. R. Bickers, and H. Mukhtar, Protection against ultraviolet B radiationinduced photocarcinogenesis in hairless mice by green tea polyphenols, Carcinogenesis, 12, 1527 (1991) https://doi.org/10.1093/carcin/12.6.991
  46. H. Mukhtar and R. Agarwal, Skin cancer chemoprevention, J. Invest. Dermatol. Symp. Proc., 1, 209 (1996)
  47. Z. Y. Wang, M. T. Huang, Y. R. Lou, J. G. Xie, K. R. Reuhl, and H. L. Newmark, Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7,12-dimethylbenz[a]anthracenc-initiated SKH-1 mice, Cancer. Res., 54, 3428 (1994)
  48. A. H. Conney, Y. P. Lu, Y. R. Lou, and M. T. Huang, Inhibitory effects of tea and caffeine on UV-induced carcinogenesis: relationship to enhanced apoptosis and decreased tissue fat, Eur. J. Cancer. Prev, 11(Suppl), S28 (2002)
  49. M. T. Huang, C. T. Ho, Z. Y. Wang, T. Ferraro, T. Finnegan-Olive, and Y. R. Lou, Inhibitory effect of topical application of a green tea polyphenol fraction on tumor initiation and promotion in mouse skin, Carcinogenesis, 13, 947 (1992) https://doi.org/10.1093/carcin/13.6.947
  50. R. Agarwal, S. K. Katiyar, S. I. Zaidi, and H. Mukhtar, Inhibition of skin tumor promoter-caused induction of epidermal ornithine decarboxylase in SENCAR mice by polyphenolic fraction isolated from green tea and its individual epicatechin derivatives, Cancer. Res., 52, 3582 (1992)
  51. Y. P. Lu, Y. R. Lou, J. G. Xie, Q. Y. Peng, J. Liao, and C. S. Yang, Topical applications of caffeine or (- )-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice, Proc. Natl. Acad. Sci. USA, 99, 12455 (2002)
  52. H. Wei, X. Zhang, J. F. Zhao, Z. Y. Wang, D. Bickers, and M. Lebwohl, Scavenging of hydrogen peroxide and inhibition of ultraviolet light-induced oxidative DNA damage by aqueous extracts from green and black teas, Free Radic. Biol. Med., 26, 1427 (1999) https://doi.org/10.1016/S0891-5849(99)00005-2
  53. S. K. Katiyar, A. Perez, and H. Mukhtar, Green tea polyphenol treatment to human skin prevents formation of ultraviolet light B-induced pyrimidine dimers in DNA, Clin. Cancer. Res., 6, 3864 (2000)
  54. S. K. Katiyar, F. Afaq, A. Perez, and H. Mukhtar, Green tea polyphenol (- )-epigallocatechin- 3-gallate treatment of human skin inhibits ultraviolet radiationinduced oxidative stress, Carcinogenesis, 22, 287 (2001) https://doi.org/10.1093/carcin/22.2.287
  55. S. K. Katiyar, A. Challa, T. S. McCormick, K. D. Cooper, and H. Mukhtar, Prevention of UV-induced immunosuppression in mice by the green tea polyphenol (- )-epigallocatechin-3-gallate may be associated with alterations in IL -10 and IL -12 production, Carcinogenesis, 20, 2117 (1999) https://doi.org/10.1093/carcin/20.11.2117
  56. S. K. Katiyar, B. M. Bergamo, P. K. Vyalil, and C. A. Elmets, Green tea polyphenols: DNA photodamage and photoimmunology, J. Photochem. Photobiol B, 65, 109 (2001) https://doi.org/10.1016/S1011-1344(01)00230-5
  57. S. Trompezinski, A. Denis, D. Schmitt, and J. Viac, Comparative effects of polyphenols from green tea (EGCG) and soybean (genistein) on VEGF and IL-8 release from normal human keratinocytes stimulated with the proinflammatory cytokine TNFalpha, Arch Dermatol. Res., 295, 112 (2003) https://doi.org/10.1007/s00403-003-0402-y
  58. S. K. Katiyar, C. O. Rupp, N. J. Korman, R. Agarwal, and H. Mukhtar, Inhibition of 12-tetradecanoylphorbol-13-acetate and other skin tumorpromoter-caused induction of epidermal interleukin-1 alpha mRNA and protein expression in SENCAR mice by green tea polyphenols, J. Invest. Dermatol., 105, 394 (1995) https://doi.org/10.1111/1523-1747.ep12321030
  59. J. Kim, J. S. Hwang, Y. K. Cho, Y. Han, Y. J. Jeon, and K. H. Yang, Protective effects of (- )-epigallo-catechin-3-gallate on UVA- and UVB-induced skin damage, Skin. Prarmacol. Appl. Skin Physiol., 14, 11 (2001) https://doi.org/10.1159/000056329
  60. M. Barthelman, W. B. Bair III, K. K. Stickland, W. Chen, B. N. Timmermann, and S. Valcic, (-)-Epigallocatechin- 3-gallate inhibition of ultraviolet B-induced AP- 1 activity, Carcinogenesis, 19, 2201 (1998) https://doi.org/10.1093/carcin/19.12.2201
  61. E. D. Owuor and A. N. Kong, Antioxidants and oxidants regulated signal transduction pathways, Biochem. Pharmacol, 64, 765 (2002) https://doi.org/10.1016/S0006-2952(02)01137-1
  62. W. Chen, Z. Dong, S. Valcic, B. N. Timmermann, and G. T. Bowden, Inhibition of ultraviolet B-induced c-fos gene expression and p38 mitogen-activated protein kinase activation by (- )-epigallocatechin gallate in a human keratinocyte cell line, Mol. Carcinog., 24, 79 (1999) https://doi.org/10.1002/(SICI)1098-2744(199902)24:2<79::AID-MC1>3.0.CO;2-E
  63. S. K Katiyar, F. Afaq, K. Azizuddin, and H. Mukhtar, Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (- )-epigallocatechin- 3-gallate, Toxicol. Appl. Pharmacol., 176, 110 (2001) https://doi.org/10.1006/taap.2001.9276
  64. T. Yamamoto, S. Hsu, J. Lewis, J. Wataha, D. Dickinson, and B. Singh, Green tea polyphenol causes differential oxidative environments in tumor versus normal epithelial cells, J. Pharmacol. Exp. Ther., 307, 230 (2003) https://doi.org/10.1124/jpet.103.054676
  65. D. D. Bikle, D. Ng, C. L. Tu, Y. Oda, and Z. Xie, Calcium- and vitamin D-regulated keratinocyte differentiation, Mol. Cell. Endocrinol., 177, 161 (2001) https://doi.org/10.1016/S0303-7207(01)00452-X
  66. W. B. Bollag and R. J. Bollag, 1,25-Dihydroxyvitamin D(3), phospholipase D and protein kinase C in keratinocyte differentiation, Mol. Cell. Endocrinol., 177, 173 (2001) https://doi.org/10.1016/S0303-7207(01)00440-3
  67. S. Lippens, M. Kockx, M. Knaapen, L. Mortier, R. Polakowska, and A. Verheyen, Epidermal differentiation does not involve the proapoptotic executioner caspases, but is associated with caspase-14 induction and processing, Cell. Death. Differ., 7, 1218 (2000) https://doi.org/10.1038/sj.cdd.4400785
  68. S. Hsu, J. B. Lewis, J. L. Borke, B. Singh, D. P. Dickinson, and G. B. Caughman, Chemopreventive effects of green tea polyphenols correlate with reversible induction of p57 expression, Anticancer Res., 21, 3743 (2001)
  69. T. S. Chang, M. J. Kim, K. Ryoo, J. Park, S. J. Eom, and J. Shim, p57/KIP2 modulates stress-activated signaling by inhibiting c- Jun NH2-terminal kinase/ stress-activated protein kinase, J. Biol. Chem., 278, 48092 (2003) https://doi.org/10.1074/jbc.M309421200
  70. E. Shaulian and M. Karin, AP-1 in cell proliferation and survival, Oncogene, 20, 2390 (2001) https://doi.org/10.1038/sj.onc.1204383
  71. S. Hsu, T. Yamamoto, J. Borke, D. S. Walsh, B. Singh, and S. Rao, Green tea polyphenol-induced epithelial cell terminal differentiation is associated with coordinated expression of p57/KIP2 and caspase 14, J. Pharmacol. Exp. Ther., 312, 884 (2005) https://doi.org/10.1124/jpet.104.076075
  72. D. S. Walsh, J. Borke, B. Singh, N. Do, and S. Hsu, Psoriatic epidermal cells are characterized by altered expression of caspase 14, a novel protease regulating keratinocyte terminal differentiation and varrier formation, J. Dermatol. Sci., 37, 61 (2005) https://doi.org/10.1016/j.jdermsci.2004.10.003
  73. S. Balasubramanian, T. Efimova, and R. L. Eckert, Green tea polyphenol stimulates a Ras, MEKK1, MEK3, and p38 cascade to increase activator protein 1 factor-dependent involucrin gene expression in normal human keratinocytes, J. Biol. Chem., 277, 1828 (2002) https://doi.org/10.1074/jbc.M110376200
  74. R. L. Eckert, J. F. Crish, T. Efimova, and S. Balasubramanian, Antioxidants regulate normal human keratinocyte differentiation, Biochem Pharmacol, 68, 1125 (2004) https://doi.org/10.1016/j.bcp.2004.04.029
  75. S. Balasubramanian and R. L. Eckert, Green tea polyphenol and curcumin inversely regulate human involucrin promoter activity via opposing effects on CCCAT/enhancer-binding protein function, J. Biol. Chem., 279(23), 24007 (2004) https://doi.org/10.1074/jbc.M314331200
  76. J. H. Chung, J. H. Han,. E. J. Hwang, J. Y. Seo, K. H. Cho, and K. H. Kim, Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes, FASEB J., 17, 1913 (2003)
  77. H. Babich, M. E. Krupka, H. A. Nissim, and H. L. Zuckerbraun, Differential in vitro cytotoxicity of (-) -epicatechin gallate (EGC) to cancer and normal cells from the human oral cavity, Toxicol In Vitro, 19, 231 (2005) https://doi.org/10.1016/j.tiv.2004.09.001
  78. N. Ahmad, D. K. Feyes, A. L. Nieminen, R. Agarwal, and H. Mukhtar, Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells, J. Natl. Cancer. Inst., 89, 1881 (1997) https://doi.org/10.1093/jnci/89.24.1881
  79. N. Ahmad, S. Gupta, and H. Mukhtar, Green tea polyphenol epigallocatechin- 3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells, Arch. Biochem. Biophys., 376, 338 (2000) https://doi.org/10.1006/abbi.2000.1742
  80. F. Afaq, V. M. Adhami, N. Ahmad, and H. Mukhtar, Inhinbition of ultraviolet B-mediated activation of nuclear factor kappaB in normal human epidermal keratinocytes by green tea constituent (-)-epigallocatechin-3-gallate, Oncogene, 22, 1035 (2003) https://doi.org/10.1038/sj.onc.1206206
  81. M. Nomura, W. Ma, N. Chen, A. M. Bode, and Z. Dong, Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced NF -kappaB activation by tea polyphenols, (- )-epigallocatechin gallate and theaflavins, Carcinogenesis, 21, 1885 (2000) https://doi.org/10.1093/carcin/21.10.1885
  82. S. Hsu, A mechanism-based in vitro anticancer drug screening approach for phenolic phytochemicals, Assay Drug. Dev. Technol., 1(5), 611 (2003) https://doi.org/10.1089/154065803770380968
  83. F. L. Chung, J. Schwartz, C. R. Herzog, and Y. M. Yang, Tea and cancer prevention: studies in animals and humans, J. Nutr., 133(suppJ), 3268S (2003)