DOI QR코드

DOI QR Code

A putative prolyl tRNA synthetase is involved in pheromone induction in Schizosaccharomyces pombe

Schizosaccharomyces pombe의 pheromone 유도와 연관된 prolyl tRNA synthetase

  • Kim, Daemyung (Department of Biomedical Science, Cheongju University)
  • 김대명 (청주대학교 바이오메디컬학과)
  • Received : 2018.09.14
  • Accepted : 2018.10.03
  • Published : 2018.12.31

Abstract

Previously, six Schizosaccharomyce pombe mutants that induce pheromone even in the presence of nitrogen source were isolated from a bank of temperature sensitive mutants. In this report, one of these mutants, pws6 was further characterized. The pheromone induction in pws6 mutant cells was specific to nutrient: the M-factor pheromone was induced without nitrogen starvation but not without glucose starvation. This result suggests that the pws6 mutant might have a specific defect in the pathway for nitrogen starvation. The pws6 mutant induces P-factor pheromone as well as M-factor without starvation of nitrogen in temperature sensitive mode, suggesting that the pheromone induction phenotype of pws6 mutation is not cell-type specific. From cloning of the $pws6^+$ gene by complementation of the temperature sensitive growth defect, three plasmids containing 8.1 kb, 3.3 kb, and 4.8 kb yeast DNA were recovered. These plasmids complement the growth defect of the pws6 mutant by 100%, 70%, and 10~20%, respectively. The abilities of these plasmids to complement pheromone induction phenotype of pws6 mutant cells were correlated well with the efficiencies of complementation of the growth defect. With comparison of their open reading frames to the complementation efficiencies, it is concluded that the open reading frame, SPBC19C7.06 is responsible for the complementation of temperature sensitive phenotype of the pws6 mutant. This open reading frame, named prs1, contains one long exon with no intron and encodes a putative prolyl tRNA synthetase. The putative Prs1 protein exhibits significant similarities to the prolyl tRNA synthetases of other species.

이전의 연구에서 질소원이 존재하여도 페로몬을 유도하는 6개의 Schizosaccharomyces pombe 돌연변이체를 온도민감성 돌연변이체들의 저장고로부터 분리하였음이 보고된 바 있다. 본 연구에서는 이들 중 하나인 pws6 돌연변이체의 특성을 더 연구하였다. 이 돌연변이체는 영양물질에 특이적으로 페로몬 유도를 나타내었다. 즉 질소의 고갈은 없어도 M-factor 페로몬을 유도하였으나 탄소의 고갈이 없으면 유도되지 않았다. 이러한 결과는 pws6 돌연변이체가 질소 고갈을 전달하는 경로에 특이한 결함을 가지고 있음을 시사한다. 이 돌연변이체는 M-factor 페로몬뿐만 아니라 P-factor 페로몬도 온도에 민감한 양식으로 질소의 고갈 없이 유도함을 보여 주어 이 돌연변이체의 페로몬 유도는 세포 유형에 특이적이지 않음을 시사하였다. 이 돌연변이체의 온도 민감성 성장 결함의 상보적 보완에 의해 $pws6^+$ 유전자를 클로닝하여 8.1 kb, 3.3 kb, 그리고 4.8 kb 효모 DNA를 가진 3개의 플라스미드가 분리되었다. 이 플라스미드들은 pws6 돌연변이체의 성장 결함을 각각 100%, 70%, 그리고 10-20% 보완하였다. 또한 이 플라스미드들은 pws6 돌연변이체의 페로몬 유도 특성을 보완하는 능력을 가지고 있었으며 이는 돌연변이체의 성장 결함 보완 효율과 밀접한 연관성이 있음을 보여 주었다. 이들의 오픈 리딩 프레임을 성장 결함의 보완 효율과 비교하여 오픈 리딩 프레임 SPBC19C7.06이 pws6 돌연변이체의 온도 민감성 특성을 상보적으로 보완하는데 원인이 되는 리딩 프레임으로 결론 내렸다. 이 오픈 리딩 프레임은 prs1으로 명명되었으며 인트론이 없이 하나의 긴 엑손을 가지고 있는 추정된 prolyl tRNA synthetase를 암호화한다. 추정된 Prs1 단백질은 다른 종의 prolyl tRNA synthetase와 상당한 유사성을 보여 주었다.

Keywords

MSMHBQ_2018_v54n4_309_f0001.png 이미지

Fig. 1. Effect of nutrient on the M-factor pheromone induction in pws6 mutant cells.

MSMHBQ_2018_v54n4_309_f0002.png 이미지

Fig. 2. P-factor pheromone induction in pws6 mutant cells.

MSMHBQ_2018_v54n4_309_f0003.png 이미지

Fig. 3. Restriction map and complementation analysis of the pws6 clones.

MSMHBQ_2018_v54n4_309_f0004.png 이미지

Fig. 4. Complementation of pheromone induction phenotype.

Table 1. Transformation of the pws6 cells with genomic DNA

MSMHBQ_2018_v54n4_309_t0001.png 이미지

References

  1. Alfa C, Fantes P, Hyams J, McLeod M, and Warbrick E. 1993. Experiments with fission yeast: a laboratory course manual, pp. 133-136, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
  2. Alvarez B and Moreno S. 2006. Fission yeast Tor2 promotes cell growth and represses cell differentiation. J. Cell Sci. 119, 4475-4485. https://doi.org/10.1242/jcs.03241
  3. Aono T, Yanai H, Miki F, Davey J, and Shimoda C. 1994. Mating pheromone-induced expression of the MAT1-Pm gene of Schizosaccharomyces pombe: identification of signaling components and characterization of upstream controlling elements. Yeast 10, 757-770. https://doi.org/10.1002/yea.320100607
  4. Arita T, Morimoto M, Yamamoto Y, Miyashita H, Kitazawa S, Hirayama T, Sakamoto S, Miyamoto K, Adachi R, Iwatani M, et al. 2017. Prolyl-tRNA synthetase inhibition promotes cell death in SK-MEL-2 cells through GCN2-ATF4 pathway activation. Biochem. Biophys. Res. Commun. 488, 648-654. https://doi.org/10.1016/j.bbrc.2017.01.045
  5. Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, and De Virgilio C. 2012. Leucyl-tRNA synthetase control TORC1 via the EGO complex. Mol. Cell 46, 105-110. https://doi.org/10.1016/j.molcel.2012.02.009
  6. Byrne SM and Hoffman CS. 1993. Six git genes encode a glucoseinduced adenylate cyclase activation pathway in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 105, 1095-1100.
  7. Corradetti MN and Guan KL. 2006. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene 25, 6347-6360. https://doi.org/10.1038/sj.onc.1209885
  8. D'Aniello C, Fico A, Casalino L, Guardiola O, Di Napoli G, Cermola F, De Cesare D, Tate R, Cobellis G, Patriarca EJ, et al. 2015. A novel autoregulatory loop between the Gcn2-Atf4 pathway and L-Proline metabolism controls stem cell identity. Cell Death Differ. 22, 1094-1105. https://doi.org/10.1038/cdd.2015.24
  9. Davey J. 1992. Mating pheromones of the fission yeast Schizosaccharomyces pombe: purification and structural characterization of M-factor and isolation and analysis of two genes encoding the pheromone. EMBO J. 11, 951-960. https://doi.org/10.1002/j.1460-2075.1992.tb05134.x
  10. Davey J. 1998. Fusion of a fission yeast. Yeast 14, 1529-1566. https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1529::AID-YEA357>3.0.CO;2-0
  11. Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, and Kim S. 2012. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410-424. https://doi.org/10.1016/j.cell.2012.02.044
  12. Hayashi T, Hatanaka M, Nagao K, Nakaseko Y, Kanoh J, Kokubu A, Ebe M, and Yanagida M. 2007. Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits. Genes Cells 12, 1357-1370. https://doi.org/10.1111/j.1365-2443.2007.01141.x
  13. Higuchi T, Watanabe Y, and Yamamoto M. 2002. Protein kinase A regulates sexual development and gluconeogenesis through phosphorylation of the Zn finger transcriptional activator Rst2p in fission yeast. Mol. Cell. Biol. 22, 1-11. https://doi.org/10.1128/MCB.22.1.1-11.2002
  14. Hinnebusch AG. 1994. The eIF-2 kinases: regulators of protein synthesis in starvation and stress. Semin. Cell Biol. 5, 417-426. https://doi.org/10.1006/scel.1994.1049
  15. Hoffman CS and Winston F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267-272. https://doi.org/10.1016/0378-1119(87)90131-4
  16. Huang J and Manning BD. 2008. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179-190. https://doi.org/10.1042/BJ20080281
  17. Imai Y and Yamamoto M. 1994. The fission yeast mating pheromone P-factor: its molecular structure, gene structure, and physiological activities to induce gene expression and Gl arrest in the mating partner. Genes Dev. 8, 328-338. https://doi.org/10.1101/gad.8.3.328
  18. Isshiki T, Mochizuki N, Maeda T, and Yamamoto M. 1992. Characterization of a fission yeast gene, gpa2, that encodes a G alpha subunit involved in the monitoring of nutrition. Genes Dev. 6, 2455-2462. https://doi.org/10.1101/gad.6.12b.2455
  19. Jewell JL, Russell RC, and Guan KL. 2013. Amino acid signaling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 14, 133-139. https://doi.org/10.1038/nrm3522
  20. Jun J and Kim D. 2008. A pheromone mutant of Schizosaccharomyces pombe displays nucleolar fragmentation. BMB Rep. 41, 248-253. https://doi.org/10.5483/BMBRep.2008.41.3.248
  21. Kawai M, Nakashima A, Ueno M, Ushimaru T, Aiba K, Doi H, and Uritani M. 2001. Fission yeast Tor1 functions in response to various stresses including nitrogen starvation, high osmolality, and high temperature. Curr. Genet. 39, 166-174. https://doi.org/10.1007/s002940100198
  22. Kawamukai M, Ferguson N, Wigler M, and Young D. 1991. Genetic and biochemical analysis of adenylyl cyclase of Schizosaccharomyces pombe. Cell Regul. 2, 155-164. https://doi.org/10.1091/mbc.2.2.155
  23. Kim J and Guan KL. 2011. Amino acid signaling in TOR activation. Annu. Rev. Biochem. 80, 1001-1032. https://doi.org/10.1146/annurev-biochem-062209-094414
  24. Kim L, Hoe K., Yu YM, Yeon JH, Maeng PJ. 2012. The fission yeast GATA factor, Gaf1, modulates sexual development via direct downregulation of $ste11^+$ expression in response to nitrogen starvation. PLoS One 7, e42409. https://doi.org/10.1371/journal.pone.0042409
  25. Kitamura K and Shimoda C. 1991. The Schizosaccharomyces pombe mam2 gene encodes a putative pheromone receptor which has significant homology with the Saccharomyces cerevisiae Ste2 protein. EMBO J. 10, 3743-3751. https://doi.org/10.1002/j.1460-2075.1991.tb04943.x
  26. Kjaerulff S, Davey J, and Nielsen O. 1994. Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3. Mol. Cell. Biol. 14, 3895-3905. https://doi.org/10.1128/MCB.14.6.3895
  27. Kunitomo H, Higuchi T, Iino Y, and Yamamoto M. 2000. A zincfinger protein, Rst2p, regulates transcription of the fission yeast $ste11^+$ gene, which encodes a pivotal transcription factor for sexual development. Mol. Biol. Cell 11, 3205-3217. https://doi.org/10.1091/mbc.11.9.3205
  28. Kupiec M and Weisman R. 2012. TOR links starvation responses to telomere length maintenance. Cell Cycle 11, 2268-2271. https://doi.org/10.4161/cc.20401
  29. Lageix S, Zhang J, Rothenburg S, and Hinnebusch AG. 2015. Interaction between the tRNA-binding and C-terminal domains of yeast Gcn2 regulates kinase activity in vivo. PLoS Genet. 11, e1004991. https://doi.org/10.1371/journal.pgen.1004991
  30. Laor D, Cohen A, Kupiec M, and Weisman R. 2015. TORC1 regulates developmental responses to nitrogen stress via regulation of the GATA transcription factor Gaf1. mBio 6, e00959-15.
  31. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, and Hall MN. 2002. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457-468. https://doi.org/10.1016/S1097-2765(02)00636-6
  32. Maeda T, Watanabe Y, Kunitomo H, and Yamamoto M. 1994. Cloning of the pka1 gene encoding the catalytic subunit of the cAMPdependent protein kinase in Schizosaccharomyces pombe. J. Biol. Chem. 269, 9632-9637.
  33. Mata J and Bahler J. 2006. Global roles of Ste11p, cell type, and pheromone in the control of gene expression during early sexual differentiation in fission yeast. Proc. Natl. Acad. Sci. USA 103, 15517-15522. https://doi.org/10.1073/pnas.0603403103
  34. Matsumoto S, Bandyopadhyay A, Kwiatkowski DJ, Maitra U, and Matsumoto T. 2002. Role of the Tsc1-Tsc2 complex in signaling and transport across the cell membrane in the fission yeast Schizosaccharomyces pombe. Genetics 161, 1053-1063.
  35. Matsuo T, Otsubo Y, Urano J, Tamanoi F, and Yamamoto M. 2007. Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol. Cell Biol. 27, 3154-3164. https://doi.org/10.1128/MCB.01039-06
  36. Mochizuki N and Yamamoto M. 1992. Reduction in the intracellular cAMP level triggers initiation of sexual development in fission yeast. Mol. Gen. Genet. 233, 17-24. https://doi.org/10.1007/BF00587556
  37. Nischt R, Thuroff E, and Kufer NF. 1986. Molecular cloning of a ribosomal protein gene from the fission yeast Schizosaccharomyces pombe. Curr. Genet. 10, 365-370. https://doi.org/10.1007/BF00418408
  38. Okazaki K, Okazaki N, Kume K, Jinno S, Tanaka K, and Okayama H. 1990. High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by transcomplementation of Schizosaccharomyces pombe. Nucleic Acids Res. 18, 6485-6489. https://doi.org/10.1093/nar/18.22.6485
  39. Otsubo Y, Matsuo, T, Nishimura A, Yamamoto M, and Yamashita A. 2018. tRNA production links nutrient conditions to the onset of sexual differentiation through the TORC1 pathway. EMBO Rep. 19, e44867. https://doi.org/10.15252/embr.201744867
  40. Otsubo Y, Nakashima A, Yamamoto M, and Yamashita A. 2017. TORC1-dependent phosphorylation targets in fission yeast. Biomolecules 7, 50. https://doi.org/10.3390/biom7030050
  41. Otsubo Y, Yamashita A, Ohno H, and Yamamoto M. 2014. S. pombe TORC1 activates the ubiquitin-proteasomal degradation of the meiotic regulator Mei2 in cooperation with Pat1 kinase. J. Cell Sci. 127, 2639-2646. https://doi.org/10.1242/jcs.135517
  42. Rodland GE, Tvegard T, Boye E, and Grallert B. 2014. Crosstalk between the Tor and Gcn2 pathways in response to different stresses. Cell Cycle 13, 453-461. https://doi.org/10.4161/cc.27270
  43. Sambrook J, Fritsh EF, and Maniatis T. 1989. Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
  44. Schonbrun M, Kolesnikov M, Kupiec M, and Weisman R. 2013. TORC2 is required to maintain genome stability during S phase in fission yeast. J. Biol. Chem. 288, 19649-19660. https://doi.org/10.1074/jbc.M113.464974
  45. Schonbrun M, Laor D, Lopez-Maury L, Bahler J, Kupiec M, and Weisman R. 2009. TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions. Mol. Cell. Biol. 29, 4584-4594. https://doi.org/10.1128/MCB.01879-08
  46. Shinozaki-Yabana S, Watanabe Y, and Yamamoto M. 2000. Novel WD repeat protein Mip1p facilitates function of the meiotic regulator Mei2p in fission yeast. Mol. Cell. Biol. 20, 1234-1242. https://doi.org/10.1128/MCB.20.4.1234-1242.2000
  47. Sugimoto A, Iino Y, Maeda T, Watanabe Y, and Yamamoto M. 1991. Schizosaccharomyces pombe $ste11^+$ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev. 5, 1990-1999. https://doi.org/10.1101/gad.5.11.1990
  48. Tanaka K, Davey J, Imai Y, and Yamamoto M. 1993. Schizosaccharomyces pombe map3 encodes the putative M-factor receptor. Mol. Cell. Biol. 13, 80-88. https://doi.org/10.1128/MCB.13.1.80
  49. Urano J, Sato T, Matsuo T, Otsubo Y, Yamamoto M, and Tamanoi F. 2007. Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc. Natl. Acad. Sci. USA 104, 3514-3519. https://doi.org/10.1073/pnas.0608510104
  50. Uritani M, Hidaka H, Hotta Y, Ueno M, Ushimaru T, and Toda T. 2006. Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase. Genes Cells 11, 1367-1379. https://doi.org/10.1111/j.1365-2443.2006.01025.x
  51. Valbuena N and Moreno S. 2010. TOR and PKA pathway synergized at the level of the Ste11 transcription factor to prevent mating and meiosis in fission yeast. PLoS One 5, e11514. https://doi.org/10.1371/journal.pone.0011514
  52. Valbuena N, Guan KL, and Moreno S. 2012a. The Vam6 and Gtr1-Gtr2 pathway activates TORC1 in response to amino acids in fission yeast. J. Cell Sci. 125, 1920-1928. https://doi.org/10.1242/jcs.094219
  53. Valbuena N, Rozalen AE, and Moreno S. 2012b. Fission yeast TORC1 prevents eIF2${\alpha}$ phosphorylation in response to nitrogen and amino acids via Gcn2 kinase. J. Cell Sci. 125, 5955-5959. https://doi.org/10.1242/jcs.105395
  54. van Slegtenhorst M, Carr E, Stoyanova R, Kruger WD, and Henske EP. 2004. $Tsc1^+$ and $tsc2^+$ regulate arginine uptake and metabolism in Schizosaccharomyces pombe. J. Biol. Chem. 279, 12706-12713. https://doi.org/10.1074/jbc.M313874200
  55. van Slegtenhorst M, Mustafa A, and Henske EP. 2005. Pas1, a G1 cyclin, regulates amino acid uptake and rescues a delay in G1 arrest in Tsc1 and Tsc2 mutants in Schizosaccharomyces pombe. Hum. Mol. Genet. 14, 2851-2858. https://doi.org/10.1093/hmg/ddi317
  56. Wang SH, Xue CB, Nielsen O, Davey J, and Naider F. 1994. Chemical synthesis of the M-factor mating pheromone from Schizosaccharomyces pombe. Yeast 10, 595-601. https://doi.org/10.1002/yea.320100504
  57. Watanabe Y, Iino Y, Furuhata K, Shimoda C, and Yamamoto M. 1988. The S. pombe mei2 gene encoding a crucial molecule for commitment to meiosis is under the regulation of cAMP. EMBO J. 7, 1197-1214. https://doi.org/10.1002/j.1460-2075.1988.tb02931.x
  58. Weisman R and Choder M. 2001. The fission yeast tor homolog, $tor1^+$, is required for the response to starvation and other stresses via a conserved serine. J. Biol. Chem. 276, 7027-7032. https://doi.org/10.1074/jbc.M010446200
  59. Weisman R, Roitburg I, Schonbrun M, Harari R, and Kupiec M. 2007. Opposite effects of Tor1 and Tor2 on nitrogen starvation responses in fission yeast. Genetics 175, 1153-1162. https://doi.org/10.1534/genetics.106.064170
  60. Wek RC, Ramirez M, Jackson BM, and Hinnebusch AG. 1990. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression. Mol. Cell. Biol. 10, 2820-2831. https://doi.org/10.1128/MCB.10.6.2820
  61. Welton RM and Hoffman CS. 2000. Glucose monitoring in fission yeast via the Gpa2 G${\alpha}$, the git5 G${\beta}$ and the git3 putative glucose receptor. Genetics 156, 513-521.
  62. Wright A, Maundrell K, Heyer WD, Beach D, and Nurse P. 1986. Vectors for the construction of gene banks and the integration of cloned genes in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Plasmid 15, 156-158. https://doi.org/10.1016/0147-619X(86)90051-X
  63. Wullschleger S, Loewith R, and Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124, 471-484. https://doi.org/10.1016/j.cell.2006.01.016
  64. Yuan W, Guo S, Gao J, Zhong M, Yan G, Wu W, Chao Y, and Jiang Y. 2017. General control nonderepressible 2 (GCN2) kinase inhibits target of rapamycin complex 1 in response to amino acid starvation in Saccharomyces cerevisiae. J. Biol. Chem. 292, 2660-2669. https://doi.org/10.1074/jbc.M116.772194
  65. Zaborske JM, Narasimhan J, Jiang L, Wek SA, Dittmar KA, Freimoser F, Pan T, and Wek RC. 2009. Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J. Biol. Chem. 284, 25254-25267. https://doi.org/10.1074/jbc.M109.000877
  66. Zoncu R, Efeyan A, and Sabatini DM. 2011. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell. Biol. 12, 21-35. https://doi.org/10.1038/nrm3025