• Title/Summary/Keyword: grouting pressure

Search Result 204, Processing Time 0.024 seconds

Pullout Resistance of Pressurized Soil-Nailing by Cavity Expansion Theory (공팽창이론에 의한 압력식 쏘일네일링의 인발저항력 산정)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.35-46
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of mean normal stress and the increase of coefficient of pullout friction. From laboratory tests, it was found that dilatancy angle could be estimated by modified cavity expansion theory using the measured wall displacements. The radial displacement increases with dilatancy angle decrease and the dilatancy angle increases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the modified cavity expansion theory.

A Study on Application of Improved Tunnel Water-Sealing Grouting Construction Process and the Inverse Analysis Material Selection Method Using the Injection Processing Results (개선된 터널 차수그라우팅 시공 프로세스 적용 및 그 주입시공결과를 이용한 역해석 재료선정방법 연구)

  • Kim, Jin Chun;Yoo, Byung Sun;Kang, Hee Jin;Choi, Gi Sung;Kim, Seok Hyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.101-113
    • /
    • 2022
  • This study is planned with the aim of developing a systematic construction process based on the scientific and engineering theory of the water-sealing grouting construction applied to the tunnel excavation process during the construction of the downtown underground traffic network, so that the construction quality of the relatively backward domestic tunnel water-sealing grouting construction is improved and continuously maintained no matter who constructs it. The main contents of the improved tunnel water-sealing grouting can be largely examined in the classification of tunnel water-sealing grouting application and the definition of grouting materials, the correlation analysis of groundwater pressure conditions with groundwater inflow, the study of the characteristic factors of bedrock, and the element technologies and injection management techniques required for grouting construction. Looking at the trends in global research, research in the field of theoretical-based science and engineering grouting is actively progressing in Nordic countries (Sweden, Finland, Norway, etc.), Japan, Germany, and the United States. Therefore, in this study, the algorithm is established through theoretical analysis of the elements of tunnel water-sealing grouting construction techniques to provide an integrated solution including a construction process that can effectively construct tunnel water-sealing grouting construction.

A Study on Bearing Capacity Reinforcement for PHC Pile Foundation Using Post-grouting (그라우팅 기법을 활용한 PHC 파일 기초의 지지력 증강 효과 연구)

  • Yoo, Min-Taek;Lee, Su-Hyung;Kim, Seok-Jung;Choi, Yeong-Tae;Park, Jeongjun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.17-25
    • /
    • 2017
  • In this research, post grouting methods were applied on PHC piles, and static load tests were conducted to confirm the effect of post grouting on bearing capacity enhancement of PHC piles. Grouting pressures of 1.9 MPa and 3.5 MPa were applied, and bearing capacities of grouted piles were compared with that of non-grouted pile. From the static load test results, the bearing capacities of grouted piles were about 3 times higher than that of non-grouted pile. In addition, the design efficiency (allowable bearing capacity/nominal bearing capacity) increased from 32% to 97% after post grouting, and the axial stiffness of piles also increased by about 1.3 times per grouting pressure.

A study on the treatment of external water pressure for the water pressure tunnel at the structural analysis of concrete lining (압력도수터널 콘크리트 라이닝 구조 계산시 외수압 처리에 관한 연구)

  • Lee, Hyeon-Sub;Lee, Young-Joon;Seo, Seung-Woo;Hwang, Young-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.653-664
    • /
    • 2015
  • When the structural analysis is performed for the concrete lining of the water pressure tunnel, many parameters are considered such as relaxed ground loads, internal water pressure, external water pressure, the shrinkage of the concrete lining, grouting pressure, etc. But, there are no standards and manuals for the structural analysis for the concrete lining of the water pressure tunnel. Above all, the external water pressure has an much effect on the stability of tunnel. So, in case that permeability of ground is large, the external water pressure should be decreased by installation of weep hole, or reinforced ground by ground improvement grouting should be pressed by the external water pressure instead. But, when weep hole is installed to reduce the external water pressure, the many problems may me occurred. Thus, reasonable approach for treatment of the external water pressure is necessary if weep hole is not installed. Therefore, the purpose of this study is to analyze design cases and studies for treatment of the external water pressure in performing structural analysis for the concrete lining of the water pressure tunnel, and to find reasonable method for tunnel lining modeling which is the treatment of the external water pressure according to permeability of ground and consequently the design of ground improvement grouting.

A Study of the Compaction Effect of Expansive Admixture for the Development of an Expansive Compaction Packer

  • Kim, Jin-Chun;Park, Ki-Yeon;Lee, Dong-Ik;Lee, Gyu-Sang;Kim, Sang-Gyun;Yoo, Byung-Sun;Choi, Gi-Sung
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.179-188
    • /
    • 2015
  • Although permeating injection is ideal for grouting reservoir embankments, it is usually combined with fracturing injection for grouting, which can disturb the original soil. Compaction with low expansive pressure followed by grout injection can overcome this problem. An expansive compaction (EC) packer was developed in this work to easily apply sequential injection and compaction at a work site. Furthermore, to achieve compaction around the grouting hole, a mixture of expansive admixtures and grout was injected with the EC packer to trigger an increase in volume of the grout material. This work verifies the compaction effect of the EC packer and the expansive admixture. It reports the concepts of the EC packer, the range of expansive compaction, the effectiveness of injection, and the results of indoor tests performed to verify the effectiveness of the expansive admixtures. The indoor testing comprised a preparatory test and the main test. The preparatory test assessed the admixtures for their compaction effects, while the main test measured and analyzed the admixtures' expansive force, pressure, and compaction effect with a mold to verify the effectiveness of the compaction effect.

A Study on the Injection Characters of The Back Side Grouting Method by a Model Test (모형실험을 통한 배면지수 그라우팅기법에 관한 연구)

  • Chun, Byung-Sik;Choi, Choon-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.175-182
    • /
    • 2002
  • The cement injection technology on the purpose of ground reinforcement and cut-off has been used in construction sites until now. However, recently it is applied to prevent leakage of underground structure. In this study, applicability of the back side waterproof grouting method was verified through performing field model tests and reviewing case histories. From the results of this study, injection shape of the back side waterproof grouting method was appeared to be root type, and waterproof effect by injection of cement grout material was excellent because grout material infiltrated into boundary between wall of structure and back side ground to be waterproof layer. Components influencing infiltration of injection material are type of soil and degree of compaction. For effective injection, injection pressure has to vary gradually from high pressure to low pessure and small quantity of injection material has to be injected for long times. Also, spacing of injection hole must be designed considering condition of back side ground, injection area, W/C ratio, the number of injection and injection pattern properly.

A CASE STUDY OF FEM ANALYSIS ON GROUND REINFORCEMENT USING HORIZONTAL JET GROUT ROOFING IN SOFT GROUND TUNNELING (연약 지층 터널의 보강공법에 관한 FEM 해석 사례연구)

  • 김주봉;문상조
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10a
    • /
    • pp.51-56
    • /
    • 1993
  • This paper presents the FEM anlysis results performed to assess the applicability of Horizontal Jet Grout Roofing, and of ground improvement methods for tunneling in soft ground. Horizontal Jet Grount Roofing Method is applicable to ensure the stability of tunnel face in non-cemeted alluvial strata under high ground water pressure. For applying this method, to ensure the reliability, the Horizontel Jet Grout Roofing should be double lined with pre-grouting to reduce the water inflow during the jet grouting.

  • PDF

Application Assessment of FRP Grouting Method (FRP보강 그라우팅공법의 적용성 평가)

  • 박종호;오명렬;이재덕;박용원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10b
    • /
    • pp.60-76
    • /
    • 2001
  • The grout-effect evaluation of the ground reinforcement technique, which has been widely applied to civil engineering and construction fields, is not established for the guidelines of choosing the efficient evaluation method, and in fact the expects have little effort to determine the reinforcement effect quantitively. This paper presents some results a field test performance of FRP pressure grouting method at a collapsed slope were carried out to verify the improving effect.

  • PDF