• Title/Summary/Keyword: group algebra

Search Result 185, Processing Time 0.02 seconds

HARMONIC OPERATORS IN $L^p(V N(G))$

  • Lee, Hun Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.319-329
    • /
    • 2012
  • For a norm 1 function ${\sigma}$ in the Fourier-Stieltjes algebra of a locally compact group we define the space of ${\sigma}$-harmonic operators in the non-commutative $L^p$-space associated to the group von Neumann algebra of G. We will investigate some properties of the space and will obtain a precise description of it.

THE TENSOR PRODUCT OF AN ODD SPHERICAL NON-COMMUTATIVE TORUS WITH A CUNTZ ALGEBRA

  • Boo, Deok-Hoon;Park, Chun-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.151-161
    • /
    • 1998
  • The odd spherical non-commutative tori $\mathbb{S}_{\omega}$ were defined in [2]. Assume that no non-trivial matrix algebra can be factored out of $\mathbb{S}_{\omega}$, and that the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus with a matrix algebra $M_{km}(\mathbb{C})$. It is shown that the tensor product of $\mathbb{S}_{\omega}$ with the even Cuntz algebra $\mathcal{O}_{2d}$ has the trivial bundle structure if and, only if km and 2d - 1 are relatively prime, and that the tensor product of $\mathbb{S}_{\omega}$ with the generalized Cuntz algebra $\mathcal{O}_{\infty}$ has a non-trivial bundle structure when km > 1.

  • PDF

COHOMOLOGY GROUPS OF RADICAL EXTENSIONS

  • Choi, Eun-Mi
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.151-167
    • /
    • 2007
  • If k is a subfield of $\mathbb{Q}(\varepsilon_m)$ then the cohomology group $H^2(k(\varepsilon_n)/k)$ is isomorphic to $H^2(k(\varepsilon_{n'})/k)$ with gcd(m, n') = 1. This enables us to reduce a cyclotomic k-algebra over $k(\varepsilon_n)$ to the one over $k(\varepsilon_{n'})$. A radical extension in projective Schur algebra theory is regarded as an analog of cyclotomic extension in Schur algebra theory. We will study a reduction of cohomology group of radical extension and show that a Galois cohomology group of a radical extension is isomorphic to that of a certain subextension of radical extension. We then draw a cohomological characterization of radical group.

GALOIS CORRESPONDENCES FOR SUBFACTORS RELATED TO NORMAL SUBGROUPS

  • Lee, Jung-Rye
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.253-260
    • /
    • 2002
  • For an outer action $\alpha$ of a finite group G on a factor M, it was proved that H is a, normal subgroup of G if and only if there exists a finite group F and an outer action $\beta$ of F on the crossed product algebra M $\times$$_{\alpha}$ G = (M $\times$$_{\alpha}$ F. We generalize this to infinite group actions. For an outer action $\alpha$ of a discrete group, we obtain a Galois correspondence for crossed product algebras related to normal subgroups. When $\alpha$ satisfies a certain condition, we also obtain a Galois correspondence for fixed point algebras. Furthermore, for a minimal action $\alpha$ of a compact group G and a closed normal subgroup H, we prove $M^{G}$ = ( $M^{H}$)$^{{beta}(G/H)}$for a minimal action $\beta$ of G/H on $M^{H}$.f G/H on $M^{H}$.TEX> H/.

CAUCHY DECOMPOSITION FORMULAS FOR SCHUR MODULES

  • Ko, Hyoung J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.41-55
    • /
    • 1992
  • The characteristic free representation theory of the general linear group is one of the powerful tools in the study of invariant theory, algebraic geometry, and commutative algebra. Recently the study of such representations became a popular theme. In this paper we study the representation-theoretic structures of the symmetric algebra and the exterior algebra over a commutative ring with unity 1.

  • PDF

ON THE TWO SIDED IDEALS OF ORDERS IN A QUATERNION ALGEBRA

  • JUN, SUNG TAE;KIM, IN SUK
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.365-378
    • /
    • 2004
  • The orders in quaternion algebras play central role in the theory of Hecke operators. In this paper, we study the order of two sided ideal group in orders of a quaternion algebra.

  • PDF

COMPUTERS IN ALGEBRA: NEW ANSWERS, NEW QUESTIONS

  • Praeger, Cheryl E.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.763-780
    • /
    • 2001
  • The use and development of of computer technology by algebraists over the last forty years has revolutionised the way in which algebraists think about algebra, and the way they teach it and conduct their research. This paper is a personal reflection on these changes by a somewhat unwilling computer user.

  • PDF

IRREDUCIBLE REPRESENTATIONS OF SOME METACYCLIC GROUPS WITH AN APPLICATION

  • Sim, Hyo-Seob
    • East Asian mathematical journal
    • /
    • v.33 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • Motivated by the problem of determining all right ideals of a group algebra FG for a finite group G over a finite field F, we explicitly determine the faithful irreducible representations of some finite metacylic groups over finite fields. By using that result, we determine the structure of all right ideals of the group algebra for the symmetric group $S_3$ over a finite field F, as an example.