COHOMOLOGY GROUPS OF RADICAL EXTENSIONS

EUNMI CHOI

ABSTRACT. If k is a subfield of $\mathbb{Q}(\varepsilon_m)$ then the cohomology group $H^2(k(\varepsilon_n)/k)$ is isomorphic to $H^2(k(\varepsilon_{n'})/k)$ with $\gcd(m,n')=1$. This enables us to reduce a cyclotomic k-algebra over $k(\varepsilon_n)$ to the one over $k(\varepsilon_{n'})$. A radical extension in projective Schur algebra theory is regarded as an analog of cyclotomic extension in Schur algebra theory. We will study a reduction of cohomology group of radical extension and show that a Galois cohomology group of a radical extension is isomorphic to that of a certain subextension of radical extension. We then draw a cohomological characterization of radical group.

1. Introduction

Let k be a field, k^* be the multiplicative subgroup of k and $\mu(k)$ be the group of roots of unity in k. For a Galois extension L of k with Galois group $\mathcal{G} = \mathcal{G}(L/k)$ and for a 2-cocycle $\alpha \in Z^2(\mathcal{G}, L^*) = Z^2(L/k, L^*)$, a crossed product algebra $(L/k, \alpha) = \sum_{\sigma \in \mathcal{G}} L u_{\sigma}$ with $u_{\sigma}u_{\tau} = \alpha(\sigma, \tau)u_{\sigma\tau}$ and $u_{\sigma}x = \sigma(x)u_{\sigma}$ $(x \in L, \sigma, \tau \in \mathcal{G})$ is called a cyclotomic algebra if L is a cyclotomic extension of k and α has values in $\mu(L)$ (i.e., $\alpha \in Z^2(L/k, \mu(L))$). Let $H^2_{\iota}(L/k)$ be the image of a canonical homomorphism ι of $H^2(L/k, \mu(L))$ into $H^2(L/k, L^*)$ induced by the inclusion $\mu(L) \hookrightarrow L^*$. Since $\mu(L)$ is a subgroup of the torsion group of L^* , ι is injective ([7, p.91]), so we may identify $H^2(L/k, \mu(L)) = H^2_{\iota}(L/k) \leq H^2(L/k, L^*)$.

Suppose k is a subfield of the cyclotomic extension $\mathbb{Q}(\varepsilon_m)$ (\mathbb{Q} : the rational number field, ε_m : a primitive m-th root of unity). Let $L=k(\varepsilon_n)$. Due to [6], m and n are assumed to be either odd or divisible by 4. Then the Galois cohomology group $H^2_\iota(L/k)$ is isomorphic to $H^2_\iota(K/k)$ where $K=k(\varepsilon_{n'})$ is a subextension of L such that n' is a certain divisor of n which is prime to m [13, (7.12)]. Employing this result, Janusz's reduction theorem on cyclotomic algebras in [6] ([13, (7.9)]) follows that, a cyclotomic algebra $(L/k, \alpha)$ with $\alpha \in Z^2(L/k, \mu(L))$ can be reduced to the case $\gcd(m, n) = 1$, i.e., to $(K/k, \beta)$ where β is a 2-cocycle in $Z^2(K/k, \mu(K))$ defined over the smaller group $\mathcal{G}(K/k)$.

Received August 9, 2005.

 $^{2000\} Mathematics\ Subject\ Classification.\ Primary\ 16K50,\ 20G10.$

Key words and phrases. cohomology group, radical extension.

This study was supported by Hannam University Research Fund 2005.

It is well known that every $Schur\ k$ -algebra (a central simple k-algebra which is a homomorphic image of a group algebra kG for a finite group G) is similar to a cyclotomic k-algebra [13, (3.10)]. The idea of Schur algebra has been generalized to a projective Schur algebra in [9] by replacing group algebra by twisted group algebra; a projective Schur k-algebra is a central simple algebra that is a homomorphic image of a twisted group algebra $k^{\alpha}G$ for a finite group G and $\alpha \in Z^2(G, k^*)$.

The analogue of cyclotomic algebra in the theory of projective Schur algebra is the radical algebra ([1]). A radical k-algebra is a crossed product algebra $(L/k, \alpha)$ where $L = k(\Omega)$ is a finite Galois radical extension of k, Ω is a subgroup of L^* which is finite modulo k^* (i.e., Ω/k^* finite), and $\alpha \in Z^2(L/k, L^*)$ is represented by a 2-cocycle with values in Ω .

In this paper we study radical extensions and radical algebras, and obtain a corresponding result to Janusz's reduction theorem on radical extensions. We derive a reduction of Galois cohomology groups over radical extension fields, indeed prove that for a radical extension L of k, there exists a Galois radical extension K of k in L such that the cohomology group of $\mathcal{G}(L/k)$ is isomorphic to that of $\mathcal{G}(K/k)$ (in Theorem 10). We then verify a cohomological characterization of radical groups that a homomorphism of radical groups $R(K/k) \to R(L/k)$ commutes with certain homomorphisms of cohomology groups (in Theorem 14).

All notations are standard. $H^2(L/k, M)$ is the 2-dimensional cohomology group $H^2(G, M)$ where $G = \mathcal{G}(L/k)$ and M is a G-module, while $Z^2(L/k, M)$ is the 2-cocycle group. If $M = L^*$, we write $H^2(L/k, L^*) = H^2(L/k)$. Let ε_d (d > 0) denote a primitive d-th root of unity, a|b denote the division of b by a, while $a^t|b$ denote the highest power t of a to be $a^t|b$.

2. Preliminaries

Lemma 1. ([13, 7.10]) Let H be a cyclic normal subgroup of G and M be a finite G-module. Let $N_H = \prod_{h \in H} h$. If $N_H(M) = M^H$ then inf: $H^2(G/H, M^H) \to H^2(G, M)$ is an isomorphism, where inf is the inflation map from G/H to G and M^H is the subset of M consisting of elements fixed by H.

For finite Galois extensions K and L of k with K < L, the norm $N_{L/K}$: $L \to K$, $x \mapsto (\prod_{\sigma \in \mathcal{G}(L/K)} \sigma)(x)$ is a homomorphism for $x \in L$. If $H = \mathcal{G}(L/K)$ is normal in $\mathcal{G} = \mathcal{G}(L/k)$, then $N_{L/K}$ corresponds to N_H in Lemma 1. In particular it is clear that $N_{\mathbb{Q}(\varepsilon_{p^{i+1}})/\mathbb{Q}(\varepsilon_{p^{i}})}\langle \varepsilon_{p^{i+1}} \rangle = \langle \varepsilon_{p^{i}} \rangle = \langle \varepsilon_{p^{i+1}} \rangle^{H}$ for a prime p and i > 0, thus the following theorem is due to Lemma 1.

Theorem 2. ([13, (7.12)]) Let $k \leq \mathbb{Q}(\varepsilon_m)$ and $L = \mathbb{Q}(\varepsilon_m, \varepsilon_n)$. Let $n' = 4^{\delta}p_1 \cdots p_s$ where p_i are distinct odd prime divisors of n not dividing m, and $\delta = 1$ if 4|n, $4 \not|m$; $\delta = 0$ otherwise. Let $K = \mathbb{Q}(\varepsilon_m, \varepsilon_{n'})$. Then $H^2_{\iota}(K/k) \cong H^2_{\iota}(L/k)$.

As a consequence of Theorem 2, Janusz proved the next theorem on algebras.

Theorem 3. ([6], [13, (7.9)]) If $k \leq \mathbb{Q}(\varepsilon_m)$ then any cyclotomic algebra over k is similar to the cyclotomic algebra $(\mathbb{Q}(\varepsilon_m, \varepsilon_t)/k, \alpha)$ with $t = 4^{\delta}p_1 \cdots p_s$; $\delta = 0$ if 4|m and $\delta = 1$ otherwise, where all p_i are distinct odd primes not dividing m.

Theorem 2 and 3 can be generalized to any cyclotomic extension field L containing finitely many roots of unity in [4].

Theorem 4. Let $k \leq \mathbb{Q}(\varepsilon_m)$ and $L = \mathbb{Q}(\varepsilon_m, \varepsilon_{n_1}, \dots, \varepsilon_{n_m})$. Let

$$n'_1 = 4^{\delta_1} p_1 \cdots p_s$$
 with distinct odd primes $p_j | n_1, p_j \nmid m \ (1 \leq j \leq s)$

and $\delta_1 = 1$ if $4|n_1, 4 \nmid m$; $\delta_1 = 0$ otherwise. And for $1 < i \le w$, let

$$n_i' = 4^{\delta_i} p_{i1} \cdots p_{iu_i}$$

with $p_{ij}|n_i, p_{ij} \nmid m(1 \leq j \leq u_i)$, and $p_{ij} \nmid n_v(1 \leq v < i)$ where p_{ij} are distinct odd primes, and $\delta_i = 1$ if $4|n_i, 4 \nmid m, 4 \nmid n_v \ (1 \leq v < i)$; $\delta_i = 0$ otherwise. Then $H^2_\iota(L/k) \cong H^2_\iota(K/k)$ where $K = \mathbb{Q}(\varepsilon_m, \varepsilon_{n'_1}, \ldots, \varepsilon_{n'_w})$. Furthermore, a crossed product algebra $(L/k, \alpha)$ with $\alpha \in Z^2(L/k, \mu(L))$ is similar to $(K/k, \beta)$ where β is a 2-cocycle having values in $\mu(K)$.

Proof. We will prove this when $L=\mathbb{Q}(\varepsilon_m,\varepsilon_{n_1},\varepsilon_{n_2})$. Write $n_1'=4^{\delta_1}p_1\cdots p_s$ and $n_2'=4^{\delta_2}q_1\cdots q_u$ where p_i [resp. q_j] are distinct odd prime divisors of n_1 [resp. n_2] with $p_i\nmid m$, $q_j\nmid m$ and $q_j\nmid n_1$ for $1\leq i\leq s$, $1\leq j\leq u$. And $\delta_1=1$ if $4|n_1,4\nmid m$; $\delta_2=1$ if $4|n_2,4\nmid m$, $4\nmid n_1$; and $\delta_1=\delta_2=0$ otherwise.

Let
$$K = \mathbb{Q}(\varepsilon_m, \varepsilon_{n_1'}, \varepsilon_{n_2'})$$
 and $E = \mathbb{Q}(\varepsilon_m, \varepsilon_{n_1'}, \varepsilon_{n_2})$. Then

$$k < K = \mathbb{Q}(\varepsilon_{mn'_1}, \varepsilon_{n'_2}) \le E = \mathbb{Q}(\varepsilon_{mn'_1}, \varepsilon_{n_2})$$

for, $gcd(m, n'_i) = 1(i = 1, 2)$. Since each q_j in the factorization of n'_2 satisfies

$$q_j \nmid mn_1'; \quad \delta_2 = 1 \quad \text{if } 4|n_2 \text{ and } 4 \nmid mn_1'; \quad \text{and} \quad \delta_2 = 0 \quad \text{otherwise},$$

we are able to use Theorem 2 on K and E to get $H^2_\iota(K/k) \cong H^2_\iota(E/k)$. Moreover with $l = \text{lcm}(m, n_2)$, we have

$$E=\mathbb{Q}(\varepsilon_m,\varepsilon_{n_2})(\varepsilon_{n_1'})=\mathbb{Q}(\varepsilon_l,\varepsilon_{n_1'})\leq L=\mathbb{Q}(\varepsilon_m,\varepsilon_{n_2})(\varepsilon_{n_1})=\mathbb{Q}(\varepsilon_l,\varepsilon_{n_1})$$

and each p_i in the factorization of n'_1 satisfies

$$p_i \nmid l$$
; $\delta_1 = 1$ if $4|n_1$ and $4 \nmid l$; and $\delta_1 = 0$ otherwise.

Thus by applying Theorem 2 to L and E, we have $H_{\iota}^{2}(E/k) \cong H_{\iota}^{2}(L/k)$. Now the isomorphism $(L/k, \alpha) \cong (K/k, \beta)$ of crossed product algebra with $\alpha \in Z^{2}(L/k, \mu(L)), \beta \in Z^{2}(K/k, \mu(K))$ follows immediately by Theorem 3. \square

3. Norm on radical extension fields

A field L is a (finite) radical extension of k if there is a subgroup Ω of L^* such that $L = k(\Omega)$ and Ω/k^* is a (finite) torsion group. We may exhibit L by $k(\sqrt[n]{\sqrt{a_1}, \ldots, \sqrt[n]{a_w}})$ with $a_i \in k^*$ and $n_i > 0$ $(1 \le i \le w)$. Moreover if $L = k(\Omega)$ is a Galois extension over k, then Ω is $\mathcal{G}(L/k)$ -invariant, so $k(\Omega)$ contains enough roots of unity, i.e., $L = k(\{\varepsilon_{n_i}, \sqrt[n]{a_i} | 1 \le i \le w\})$ with primitive n_i -th roots of unity ε_{n_i} . Clearly Ω is not determined uniquely, while Ω/k^* is unique and finite.

The most interesting case of radical extension is $L = k(\lambda)$ with $\lambda \in L^*$ and $\lambda^n \in k$. If L/k is Galois radical then we may regard $L = k(\varepsilon_n, \lambda)$. In particular if $\varepsilon_n \in k$ then L/k is a cyclic extension of degree dividing n(see [8, Theorem 14.4]). The radical extension $L = k(\lambda)$ is said to be *irreducible* if degree [L:k] = n. Thus L/k is irreducible radical if and only if $L = k(\lambda)$ and $\lambda \in L^*$ is a root of an irreducible polynomial $X^n - a \in k[X]$, and, if and only if the order of λk^* in L^*/k^* is equal to the degree of λ over k.

Remark that, in case of a cyclotomic extension $L = \mathbb{Q}(\varepsilon_m, \varepsilon_{n_1}, \dots, \varepsilon_{n_w})$, the reduction in Theorem 4 would follow immediately by taking $n = \operatorname{lcm}(n_1, \dots, n_w)$ and applying Theorem 2 to m and n. However when $L = k(\sqrt[n]{a_1}, \dots, \sqrt[n]{a_w})$ is a Galois radical extension, to get a kind of reduction we need to know how to choose n_i' from n_i each other explicitly, not just taking n' from $n = \operatorname{lcm}$ of n_i 's.

Lemma 5. Let $L = k(\Omega)$ be a finite Galois radical extension of k. Then Ω/k^* is a finite G-module where $G = \mathcal{G}(L/k)$.

Proof. The finite group Ω/k^* has a G-module structure by defining an action $\sigma\lambda = \sigma(\lambda')k^*$ where $\sigma \in G$ and $\lambda \in \Omega/k^*$ such that $\lambda = \lambda'k^*$ for $\lambda' \in \Omega$.

We begin with a radical extension containing an n-th root of $1 \neq a \in k^*$.

Theorem 6. Let $k = \mathbb{Q}(\varepsilon_m)$ and $K = k(\sqrt[n]{a})$ be a Galois radical extension of k, where m and n are positive odd integers. For a prime p dividing n, let $E = k(\sqrt[pn]{a})$ and $F = k(\varepsilon_{pn}, \sqrt[n]{a})$ be Galois radical extensions of k. Then

- (i) E = F, or E/F is cyclic of degree p and $N_{E/F} \langle \varepsilon_{pn}, \sqrt[pn]{a} \rangle = \langle \varepsilon_n, \sqrt[n]{a} \rangle$.
- (ii) Furthermore we assume $p^z || m$ and $p^b || n$.
 - a) If $0 \le z \le b$ then F/K is cyclic of degree p, and $N_{F/K}\langle \varepsilon_{pn}, \sqrt[n]{a} \rangle = \langle \varepsilon_n, \sqrt[n]{a}^p \rangle < \langle \varepsilon_n, \sqrt[n]{a} \rangle$.
 - b) If b < z then E = K, or F = K so $N_{E/K} \langle \varepsilon_{pn}, \sqrt[pn]{a} \rangle = \langle \varepsilon_n, \sqrt[pn]{a} \rangle$.

Proof. The Galois radical extensions K and E form

$$k < K = k(\varepsilon_n, \sqrt[n]{a}) < F = k(\varepsilon_{pn}, \sqrt[n]{a}) < E = k(\varepsilon_{pn}, \sqrt[pn]{a}).$$

Since $E = k(\sqrt[pn]{a}) = F(\sqrt[pn]{\lambda})$ where $\lambda = \sqrt[pn]{a} \in F$ and $\sqrt[pn]{\lambda}$ is a root of $X^p - \sqrt[pn]{a} \in F[X]$, and since $\varepsilon_{pn} \in F$, E/F is a cyclic extension of degree dividing p [8, Theorem 14.4]. Hence E = F or [E : F] = p.

If [E:F]=p, any $\sigma\in\mathcal{G}(E/F)$ maps $\sqrt[pn]{a}$ to a zero of $X^{pn}-a$, say $\sigma(\sqrt[pn]{a})=\varepsilon_{pn}^{l}\sqrt[pn]{a}$ for $0\leq l< pn$. But $\sqrt[pn]{a}^{p}$ is a zero of $X^{n}-a$, so $\sqrt[pn]{a}^{p}\in F^{*}$, $\sqrt[pn]{a}^{p}=\sigma(\sqrt[pn]{a}^{p})=\varepsilon_{pn}^{pl}\sqrt[pn]{a}^{p}$ and $\varepsilon_{pn}^{pl}=1$. Thus l=tn for some $t=0,\ldots,p-1$. Moreover since each $\sigma\in\mathcal{G}(E/F)$ leaves ε_{pn} fixed, we have

$$\sigma(\sqrt[pn]{a})\varepsilon_{nn}^{tn}\sqrt[pn]{a},\sigma^2(\sqrt[pn]{a})=\varepsilon_{nn}^{2tn}\sqrt[pn]{a},\ldots,\sigma^{p-1}(\sqrt[pn]{a})=\varepsilon_{nn}^{(p-1)tn}\sqrt[pn]{a},$$

hence it follows that

$$N_{E/F}(\sqrt[pn]{a}) = \prod_{\sigma \in \mathcal{G}(E/F)} \sigma(\sqrt[pn]{a}) = \varepsilon_{pn}^{tn(1+\dots+(p-1))} \sqrt[pn]{a}^p \ = \sqrt[pn]{a}^p.$$

Thus $N_{E/F}\langle \sqrt[pn]{a} \rangle = \langle \sqrt[pn]{a}^p \rangle = \langle \sqrt[n]{a} \rangle$ and $N_{E/F}\langle \varepsilon_{pn} \rangle = \langle \varepsilon_{pn}^p \rangle = \langle \varepsilon_n \rangle$. Suppose that $m = p^z m'$ and $n = p^b n'$ with $p \nmid m'n'$. If $0 \le z \le b$ then

$$\operatorname{lcm}(m,pn) = \frac{p^z m' p^{b+1} n'}{p^z \operatorname{gcd}(m', p^{b+1-z} n')} = \frac{m' p^{b+1} n'}{\operatorname{gcd}(m', n')} = p^{b+1} \operatorname{lcm}(m', n')$$

and similarly $\operatorname{lcm}(m,n) = p^b \operatorname{lcm}(m',n')$. Set $\operatorname{lcm}(m',n') = l$. Then $\mathbb{Q}(\varepsilon_m, \varepsilon_{pn}) = \mathbb{Q}(\varepsilon_{p^{b+1}l})$ and $\mathbb{Q}(\varepsilon_m, \varepsilon_n) = \mathbb{Q}(\varepsilon_{p^b l})$ because $p \nmid l$, hence

$$[\mathbb{Q}(\varepsilon_m,\varepsilon_{pn}):\mathbb{Q}(\varepsilon_m,\varepsilon_n)] = \frac{\phi(p^{b+1}l)}{\phi(p^bl)} = \frac{\phi(p^{b+1})}{\phi(p^b)} = p$$

(where ϕ is the Euler phi function), which shows that [F:K]=p.

Now each $\tau \in \mathcal{G}(F/K)$ maps $\varepsilon_{pn} \in F$ to ε_{pn}^l for some $0 \leq l < pn$. Because $\varepsilon_{pn}^p \in K^*$, we have $\varepsilon_{pn}^p = \tau(\varepsilon_{pn}^p) = \varepsilon_{pn}^{pl}$, hence $p(l-1) \equiv 0 \pmod{pn}$ and l = tn + 1 with $0 \leq t < p$. Indeed, the cyclic group $\mathcal{G}(F/K)$ of order p consists of automorphisms τ_t such that $\tau_t(\varepsilon_{pn}) = \varepsilon_{pn}^{tn+1}$ for $0 \leq t < p$. Thus we have

$$N_{F/K}(\varepsilon_{pn}) = \varepsilon_{pn}^{\sum_{t=0}^{p-1}(tn+1)} = \varepsilon_{pn}^{p+pn\frac{(p-1)}{2}} = \varepsilon_{pn}^{p},$$

so $N_{F/K}\langle \varepsilon_{pn}\rangle = \langle \varepsilon_{pn}^p \rangle \leq \langle \varepsilon_n \rangle$. Comparing the orders, we get $N_{F/K}\langle \varepsilon_{pn} \rangle = \langle \varepsilon_n \rangle$. And $N_{F/K}\langle \sqrt[n]{a}\rangle = \langle \prod_{\tau \in \mathcal{G}(F/K)} \tau(\sqrt[n]{a})\rangle = \langle \sqrt[n]{a}\rangle / \langle \varepsilon_n, \sqrt[n]{a}\rangle$, this is (ii-a).

In case of $m = p^z m'$, $n = p^b n'$ with 0 < b < z, $\gcd(m, pn) = p\gcd(m, n)$, $\gcd(m, pn) = \gcd(m, n)$, so $\mathbb{Q}(\varepsilon_m, \varepsilon_{pn}) = \mathbb{Q}(\varepsilon_m, \varepsilon_n)$ and [F:K] = 1. Hence E = K, or [E:K] = p and $N_{E/K} \langle \varepsilon_{pn}, \sqrt[pn]{a} \rangle = N_{E/F} \langle \varepsilon_{pn}, \sqrt[pn]{a} \rangle = \langle \varepsilon_n, \sqrt[pn]{a} \rangle$.

We observe that the assumption in (ii-b), i.e., $m = p^z m'$, $n = p^b n'$ with b < z implies that $k = \mathbb{Q}(\varepsilon_m)$ already contains enough p-th roots of unity.

Corollary 7. Assume the same context as in (ii-b) Theorem 6 for radical extensions $K = k(\sqrt[p]{a}) = k(\Omega_K)$ and $E = k(\sqrt[p]{a}) = k(\Omega_E)$ with finite Ω_K/k^* and Ω_E/k^* . If $H = \mathcal{G}(E/K) \neq 1$ then $N_H(\Omega_E/k^*) = \Omega_K/k^*$.

Proof. $E = k(\varepsilon_{pn}, \sqrt[pn]{a})$ is a cyclic extension of $K = k(\varepsilon_n, \sqrt[pn]{a})$ of degree p with cyclic Galois group H. The mapping $N_H = \prod_{\sigma \in H} \sigma$ in Lemma 1 determines $N_H \langle \varepsilon_{pn}, \sqrt[pn]{a} \rangle = \langle \varepsilon_n, \sqrt[pn]{a} \rangle$ by Theorem 6. By the action in Lemma 5, we have

$$N_H(\Omega_E/k^*) = N_H \langle \varepsilon_{pn} k^*, \sqrt[pn]{a} k^* \rangle = \langle \varepsilon_n k^*, \sqrt[pn]{a} k^* \rangle = \Omega_K/k^*.$$

We shall denote $N_H(\Omega_E/k^*)$ by the same notation $N_{E/K}(\Omega_E/k^*)$ which is the norm map. As a generalization of Theorem 6, we have the following theorem.

Theorem 8. Let $k = \mathbb{Q}(\varepsilon_m)$ and $L = k(\sqrt[p]{a}) = k(\Omega)$ be a Galois radical extension of k. Assume a prime p with $p^z||m$ and $p^b||n$. Let $F = k(\sqrt[n/p]{a}) = k(\Omega_F)$ be a Galois radical extension with $L \neq F$. If $0 < b \leq z$ then $N_{L/F}(\Omega/k^*) = \Omega_F/k^*$.

Proof. Let $E = k(\varepsilon_n, \sqrt[n/p]{a})$ be a Galois radical extension. Then

$$k < F = k(\varepsilon_{n/p}, \sqrt[n/p]{a}) < E = k(\varepsilon_n, \sqrt[n/p]{a}) < L = k(\varepsilon_n, \sqrt[n/p]{a}),$$

and $L = E(\sqrt[p]{\lambda})$ where $\lambda = \sqrt[n/p]{a} \in E$ and $\sqrt[p]{\lambda}$ is a root of a polynomial $X^p - \sqrt[n/p]{a}$ in E[X]. Since $\varepsilon_p \in E$, L/E is a cyclic radical extension of degree dividing p. So L = E or [L : E] = p. Because $b \le z$, k contains enough p-th roots of unity so F = E. But since $L \ne F$, we have [L : F] = p and

$$N_{L/F}\langle \varepsilon_n, \sqrt[n]{a} \rangle = \langle \varepsilon_n^p, \sqrt[n]{a}^p \rangle = \langle \varepsilon_{n/p}, \sqrt[n/p]{a} \rangle.$$

Similar to Corollary 7, we consequently have $N_{L/F}(\Omega/k^*) = \Omega_F/k^*$.

4. Cohomology group on radical extension fields

We shall discuss cohomology groups over Galois radical extension fields, and have a reduction of cohomology group that is an analog of Theorem 2. Let H be a normal subgroup of G and M be a G-module. The inflation-restriction sequence on cohomology group

(1)
$$1 \to H^r(G/H, M^H) \xrightarrow{\inf} H^r(G, M) \xrightarrow{\operatorname{res}} H^r(H, M)$$

is exact if r = 1. When r > 1, the sequence is exact if $H^i(H, M) = 1$ for all $1 \le i \le r - 1$ (refer to [12, (3.4.2), (3.2.3)]).

Theorem 9. Let $n = p^b n_0$ and $m = p^z m_0$ with an odd prime $p \nmid n_0 m_0$. Let $k = \mathbb{Q}(\varepsilon_m)$, and $L = k(\sqrt[n]{a}) = k(\Omega)$ and $L_0 = k(\sqrt[n]{a}) = k(\Omega_0)$ be Galois radical extensions of k with $L \neq L_0$. If $0 < b \leq z$ then the inflation map is an isomorphism on cohomology groups

$$H^2(L_0/k, \Omega_0/k^*) \stackrel{inf}{\cong} H^2(L/k, \Omega_0/k^*).$$

Proof. Obviously $L=k(\varepsilon_n,\sqrt[n]{a})$ and $L_0=k(\varepsilon_{n_0},\sqrt[n]{a})$. Since $b\leq z$, ε_{p^b} is contained in $k< L_0$ so $\varepsilon_n\in L_0$. Thus $L=L_0(\sqrt[p^b]{\lambda})$ where $\lambda=\sqrt[n^b]{a}$ and $\sqrt[p^b]{\lambda}$ is a root of $X^{p^b}-\sqrt[n^b]{a}$ in $L_0[X]$. So L/L_0 is cyclic of degree p^c for some $c\leq b$. Due to Lemma 5, Ω/k^* is a $\mathcal{G}(L/k)$ -module with module action that, for

Due to Lemma 5, Ω/k^* is a $\mathcal{G}(L/k)$ -module with module action that, for any $\tau \in \mathcal{G}(L/k)$ and $\sqrt[n]{a}k^* \in \Omega/k^*$, $\tau(\sqrt[n]{a}k^*) = \tau(\sqrt[n]{a})k^* = \varepsilon_n^l \sqrt[n]{a}k^* \in \Omega/k^*$

for some l > 0. Similarly Ω_0/k^* is a $\mathcal{G}(L_0/k)$ -module. Moreover it is easy to see that Ω_0/k^* is also a $\mathcal{G}(L/k)$ -module by regarding $\sqrt[n]{a}$ as $(\sqrt[n]{a})^{p^b}$.

Write $H = \mathcal{G}(L/L_0)$. From the sequence of groups

$$1 \to \mathcal{G}(L/L_0) \to \mathcal{G}(L/k) \to \mathcal{G}(L_0/k) \to 1$$
,

we consider the inflation-restriction sequence

$$H^2(L_0/k, (\Omega_0/k^*)^H) \stackrel{\text{inf}}{\to} H^2(L/k, \Omega_0/k^*) \stackrel{\text{res}}{\to} H^2(L/L_0, \Omega_0/k^*).$$

Since H is cyclic, it follows from [12, (1.5.6)] and [12, (3.2.1)] that

$$H^2(L/L_0, \Omega_0/k^*) = H^0(H, \Omega_0/k^*) = \frac{(\Omega_0/k^*)^H}{N_{L/L_0}(\Omega_0/k^*)}.$$

Every $\sigma \in H$ leaves all elements in Ω_0/k^* fixed, so $(\Omega_0/k^*)^H = \Omega_0/k^*$. Moreover due to Theorem 8, we compute the norm N_{L/L_0} directly to get

$$N_{L/L_0}(\Omega_0/k^*) = \langle \varepsilon_{n_0}^{p^c} k^*, \sqrt[n_0]{a}^{p^c} k^* \rangle = \langle \varepsilon_{n_0} k^*, \sqrt[n_0]{a} k^* \rangle = \Omega_0/k^*$$

for $gcd(p^c, n_0) = 1$. Hence $H^2(L/L_0, \Omega_0/k^*) = 1$.

Again since H is finite cyclic and Ω_0/k^* is a finite H-module, we use the Herbrand's quotient of Ω_0/k^* (refer to [3, (23.2)]) that

$$1 = h_{2/1}(\Omega_0/k^*) = \frac{|H^2(L/L_0, \Omega_0/k^*)|}{|H^1(L/L_0, \Omega_0/k^*)|}$$

hence it follows that $H^1(L/L_0, \Omega_0/k^*) = H^2(L/L_0, \Omega_0/k^*) = 1$. Therefore we can conclude from (1) that the sequence

$$1 \to H^2(L_0/k, (\Omega_0/k^*)^H) \stackrel{\text{inf}}{\to} H^2(L/k, \Omega_0/k^*) \stackrel{\text{res}}{\to} H^2(L/L_0, \Omega_0/k^*) = 1$$
 is exact, so have an isomorphism $H^2(L_0/k, \Omega_0/k^*) \cong H^2(L/k, \Omega_0/k^*)$.

For a given finite radical extension L over k, we observed in Theorem 9 that the cohomology group over $\mathcal{G}(L/k)$ can be decreased down to that over $\mathcal{G}(L_0/k)$, where L_0 is the Galois radical extension of k smaller than L by 'one' prime factor power p^b . We can strengthen this observation with the following theorem which will go to reduction of Galois cohomology groups.

Theorem 10. Let $k = \mathbb{Q}(\varepsilon_m)$ and $L = k(\sqrt[n]{a})$ be the same fields as in Theorem 9. Assume $n = p_1^{b_1} \cdots p_u^{b_u}$ with distinct primes p_i and $b_i > 0$. For each p_i $(1 \le i \le u)$, write $m = p_i^{z_i} m_i$ (with $p_i \nmid m_i$ and $z_i \ge 0$). Suppose $b_i \le z_i$ for some $1 \le i \le u$, and after appropriate renumbering, we assume that $b_i \le z_i$ for all $s+1 \le i \le u$. Let $n_0 = p_1^{b_1} \cdots p_s^{b_s}$, and let the Galois extensions be

$$L_0 = k(\sqrt[n]{a}) = k(\Omega_0),$$

$$L_j = k({}^{n_0p_{s+1}^{b_{s+1}} \dots p_{s+j}^{b_{s+j}}} \sqrt{a}) = k(\Omega_j) \text{ for } 1 \leq j \leq u-s.$$

Then $H^2(L_j/k, \Omega_{j-1}/k^*) \cong H^2(L_{j-1}/k, \Omega_{j-1}/k^*)$ for all $1 \leq j \leq u-s$, so $H^2(L/k, \Omega_0/k^*)$ and $H^2(L_0/k, \Omega_0/k^*)$ are isomorphic.

Proof. Since L_0 , L_j $(1 \le j \le u - s)$ are all Galois radical extensions of k, and since $n = p_1^{b_1} \cdots p_s^{b_s} \cdot p_{s+1}^{b_{s+1}} \cdots p_u^{b_u} = n_0 \cdot p_{s+1}^{b_{s+1}} \cdots p_u^{b_u}$, we have $L_{u-s} = L$ and

$$k < L_{0} = k(\varepsilon_{n_{0}}, \sqrt[n_{0}]{a}) < L_{1} = k(\varepsilon_{n_{0}p_{s+1}^{b_{s+1}}}, \sqrt[n_{0}p_{s+1}^{b_{s+1}}\sqrt{a}) < \cdots$$

$$< L_{j} = k(\varepsilon_{n_{0}p_{s+1}^{b_{s+1}} \cdots p_{s+j}^{b_{s+j}}}, \sqrt[n_{0}p_{s+1}^{b_{s+1}} \cdots p_{s+j}^{b_{s+j}}\sqrt{a}) < \cdots < L_{u-s} = L.$$

Since $m = p_i^{z_i} m_i$ and $0 < b_i \le z_i$ for $s+1 \le i \le u$, each $\varepsilon_{p_i^{b_i}} \in k$. Together with $\varepsilon_{n_0} \in L_0$, $\varepsilon_{n_0 p_{s+1}^{b_{s+1}} \dots p_{s+j}^{b_{s+j}}}$ belong to L_0 for all $1 \le j \le u-s$. Hence

$$L_j = L_{j-1}(\lambda_j)$$
, where $\lambda_j \in L_j$ and $\lambda_j^{p_{s+j}^{o_{s+j}}} \in L_{j-1} \ (1 \le j \le u - s)$,

and L_j/L_{j-1} is cyclic of degree $p_{s+j}^{c_j}$ for some $c_j \leq b_{s+j}$. Thus we have the isomorphism on cohomology groups

$$H^2(L_1/k, \ \Omega_0/k^*) \cong H^2(L_0/k, \ \Omega_0/k^*)$$

due to Theorem 9, and proceeding inductively we get

(2) $H^2(L_j/k, \Omega_{j-1}/k^*) \cong H^2(L_{j-1}/k, \Omega_{j-1}/k^*)$ for each $1 \leq j \leq u - s$. Let $H = \mathcal{G}(L_2/L_0)$, and consider the inflation-restriction sequence

(3)
$$H^2(L_0/k, (\Omega_0/k^*)^H) \stackrel{\text{inf}}{\to} H^2(L_2/k, \Omega_0/k^*) \stackrel{\text{res}}{\to} H^2(L_2/L_0, \Omega_0/k^*).$$

Since $L_2 = L_0(\xi)$ with $\xi^{p_{s+1}^{b_{s+1}}p_{s+2}^{b_{s+2}}} \in L_0$, L_2/L_0 is a cyclic radical extension of degree dividing $p_{s+1}^{b_{s+1}}p_{s+2}^{b_{s+2}}$, and in fact $[L_2:L_0] = p_{s+1}^{c_1}p_{s+2}^{c_2}$. Thus

$$H = \mathcal{G}(L_2/L_0) \cong Z_{p_{s+1}^{c_1}p_{s+2}^{c_2}} \cong Z_{p_{s+1}^{c_1}} \times Z_{p_{s+2}^{c_2}} \cong \mathcal{G}(L_2/L_1) \times \mathcal{G}(L_1/L_0),$$

and by [7, (2.3.14)], we have

$$H^2(L_2/L_0, \Omega_0/k^*) \cong H^2(L_2/L_1, \Omega_0/k^*) \times H^2(L_1/L_0, \Omega_0/k^*).$$

But since $p_i \nmid n_0$ for $s+1 \leq i \leq u$, we obtain

$$N_{L_1/L_0}(\Omega_0/k^*) = \langle \varepsilon_{n_0} k^*, {}^{n_0}\sqrt{a}k^* \rangle^{p_{s+1}^{c_1}} = \Omega_0/k^* = (\Omega_0/k^*)^{L_1/L_0}$$

and similarly, $N_{L_2/L_1}(\Omega_0/k^*) = (\Omega_0/k^*)^{p_{s+2}^{c_2}} = \Omega_0/k^* = (\Omega_0/k^*)^{L_2/L_1}$

By the proof of Theorem 9, both $H^2(L_1/L_0, \Omega_0/k^*)$ and $H^2(L_2/L_1, \Omega_0/k^*)$ are trivial groups, so that $H^2(L_2/L_0, \Omega_0/k^*) = 1$. Then again the Herbrand quotient of Ω_0/k^* is equal to 1, i.e.,

$$1 = |H^{2}(L_{2}/L_{0}, \Omega_{0}/k^{*})|/|H^{1}(L_{2}/L_{0}, \Omega_{0}/k^{*})|.$$

So $H^1(L_2/L_0, \Omega_0/k^*)$ is trivial, and the inflation-restriction sequence (3) is exact. We thus obtain the isomorphism on cohomology groups

$$H^2(L_0/k, \Omega_0/k^*) \stackrel{\text{inf}}{\cong} H^2(L_2/k, \Omega_0/k^*).$$

And together with (2), it follows that

$$H^{2}(L_{2}/k, \Omega_{0}/k^{*}) \cong H^{2}(L_{1}/k, \Omega_{0}/k^{*}) \cong H^{2}(L_{0}/k, \Omega_{0}/k^{*}).$$

Applying this process to the cyclic group $H=\mathcal{G}(L_3/L_0)$ of order $p_{s+1}^{c_1}p_{s+2}^{c_2}$ $p_{s+3}^{c_3}$ and to the sequence

$$H^{2}(L_{0}/k, (\Omega_{0}/k^{*})^{H}) \stackrel{\inf}{\to} H^{2}(L_{3}/k, \Omega_{0}/k^{*}) \stackrel{\text{res}}{\to} H^{2}(L_{3}/L_{0}, \Omega_{0}/k^{*}),$$

we also get $H^2(L_3/L_0, \Omega_0/k^*) = 1$, for $\mathcal{G}(L_3/L_0) \cong \mathcal{G}(L_3/L_2) \times \mathcal{G}(L_2/L_0)$ and $H^2(L_3/L_2, \Omega_0/k^*) = 1 = H^2(L_2/L_0, \Omega_0/k^*)$.

The exactness of the inflation-restriction sequence guarantees the isomorphism $H^2(L_3/k, \Omega_0/k^*) \cong H^2(L_0/k, \Omega_0/k^*)$. Continuing, we eventually get

$$H^2(L/k, \Omega_0/k^*) = H^2(L_{u-s}/k, \Omega_0/k^*) \cong H^2(L_0/k, \Omega_0/k^*).$$

Remark 1. In Theorem 10, we assume a=1, i.e., $\sqrt[n]{a}=\varepsilon_n$ for $n=p_1^{b_1}\cdots p_u^{b_u}$ (odd primes). Suppose $m=p_i^{z_i}m_i$ with $z_i< b_i$ for $1\leq i\leq s$, and $b_i\leq z_i$ for $s+1\leq i\leq u$. Let $n_0=p_1^{b_1}\cdots p_s^{b_s}$, $L=\mathbb{Q}(\varepsilon_m,\varepsilon_n)$ and $L_0=\mathbb{Q}(\varepsilon_m,\varepsilon_{n_0})$. Then $L=L_0$ and $H^2(L/k,\Omega_L/k^*)\cong H^2(L_0/k,\Omega_{L_0}/k^*)$ (this is Theorem 10). Moreover, by rearrangement if necessary, we assume $z_1=\cdots=z_t=0$ for $t\leq s$, i.e., $p_i\not|m$ for $1\leq i\leq t$. By letting $n_0'=p_1\cdots p_t$, we can further reduce the cohomology group by Janusz theorem that

$$H^2(L/k, \mu(L)) = H^2(L_0/k, \mu(L_0)) \cong H^2(k(\varepsilon_{n_0'})/k, \mu(k(\varepsilon_{n_0'}))).$$

Remark 2. It is natural to ask whether the Remark 1 is true for $a \neq 1$ with the same n and n'_0 , i.e., is $H^2(k(\sqrt[n]{a})/k, \langle \sqrt[n]{a} \rangle/k^*) \cong H^2(k(\sqrt[n]{a})/k, \langle \sqrt[n]{a} \rangle/k^*)$? The following proposition provides a partial answer.

Proposition 11. Let $L = k(\sqrt[n]{a})$ be a Galois radical extension of $k = \mathbb{Q}(\varepsilon_m)$. Let $n = p_1^{b_1} \cdots p_u^{b_u}$ $(b_i > 0$, odd primes p_i) and $m = p_i^{z_i} m_i$ $(z_i \ge 0, p_i / m_i)$ for all i. By rearrangement, assume $z_i \le b_i$ for $1 \le i \le s (\le u)$, $z_i > b_i$ for $s+1 < i \le u$, and moreover $z_j = 0$ for $1 \le j \le t (\le s)$. Set $n_0 = p_1^{b_1} \cdots p_s^{b_s}$ and $n'_0 = p_1 \cdots p_t$. Let $K = k(\sqrt[n]{a}) = k(\Omega)$, and $F_v = k(\sqrt[n_0/p_v^{b_v-z_v}\sqrt{a})$ and $B_v = k(\varepsilon_{n_0/p_v^{b_v-z_v}}, \sqrt[n]{a})$ be Galois radical extensions of k for $t+1 \le v \le s$. Then $H^2(L/k, \Omega/k^*) \cong H^2(F_v/k, \Omega/k^*)$, $H^2(K/k, \Omega/k^*) \cong H^2(B_v/k, \Omega/k^*)$, but $H^2(F_v/k, \Omega/k^*) \not\cong H^2(B_v/k, \Omega/k^*)$.

Proof. Let $L_0 = k(\sqrt[nq]{a}) = k(\Omega_{L_0})$ be a Galois radical extension of k. With the integers $n = p_1^{b_1} \cdots p_u^{b_u}$, $n_0 = p_1^{b_1} \cdots p_s^{b_s}$ and $n_0' = p_1 \cdots p_t$ for $t \leq s \leq u$, it is clear that $k < K < L_0 < L$ and $H^2(L/k, \Omega_{L_0}/k^*) \cong H^2(L_0/k, \Omega_{L_0}/k^*)$ due to Theorem 10. Hence it is follows that

$$H^2(L/k,\Omega/k^*) \cong H^2(L_0/k,\Omega/k^*).$$

Let p_v be one of p_{t+1}, \ldots, p_s . Since $m = p_v^{z_v} m_v$ with $0 < z_v \le b_v$, the Galois radical extensions of k are

$$K = k(\varepsilon_{n_0'}, \sqrt[n']{a}) < F_v = k(\varepsilon_{n_0/p_v^{b_v-z_v}}, \sqrt[n_0/p_v^{b_v-z_v}]{a}) < L_0 = k(\varepsilon_{n_0}, \sqrt[n']{a}).$$

Now let K, \mathcal{F}_v and \mathcal{L}_0 denote the cyclotomic extensions

$$\mathcal{K} = \mathbb{Q}(\varepsilon_m, \varepsilon_{n_0'}) < \mathcal{F}_v = \mathbb{Q}(\varepsilon_m, \varepsilon_{n_0/p_v^{b_v-z_v}}) < \mathcal{L}_0 = \mathbb{Q}(\varepsilon_m, \varepsilon_{n_0}).$$

Owing to $p_v^{z_v}||\frac{n_0}{p_v^{b_v-z_v}}$ and $\varepsilon_{p_v^{z_v}} \in \mathcal{K}$, we have $p_v \nmid [\mathcal{F}_v : \mathcal{K}]$ and $H^2(\mathcal{F}_v/\mathcal{K}, \mu(\mathcal{F}_v)) = H^2(\mathcal{L}_0/\mathcal{F}_v, \mu(\mathcal{L}_0)) = 1$. Thus due to Janusz theorem we have

$$H^2(\mathcal{K}/k,\mu(\mathcal{K})) \cong H^2(\mathcal{F}_v/k,\mu(\mathcal{F}_v)) \cong H^2(\mathcal{L}_0/k,\mu(\mathcal{L}_0)).$$

On the other hand, from the tower of fields

$$k < K = \mathcal{K}(\sqrt[n']{a}) < F_v = \mathcal{F}_v(\sqrt[n_0/p_v^{b_v - z_v}]{a}) < L_0 = \mathcal{L}_0(\sqrt[n]{a}),$$

consider a field $A_v = k(\varepsilon_{n_0}, \frac{n_0/p_v^{b_v-z_v}}{\sqrt{a}})$. We now observe the followings.

- (i) $K < B_v < F_v < A_v < L_0$
- (ii) $L_0 = A_v(\sqrt[p^{z_v}]{\lambda})$ where $\lambda = \sqrt[n_0/p_b^{b_v-z_v}]{a}$ and $\sqrt[p^{z_v}]{\lambda}$ is a root of $X^{p_v^{z_v}} \lambda \in A_v[X]$. Since $\varepsilon_{p_v^{z_v}} \in A_v$, L_0/A_v is a cyclic extension of order $p_v^{w_v}$ with $w_v \leq z_v$.
- (iii) Similar to (ii), it can be seen that $F_v = B_v(\sqrt[n_0/n_0'p_v^{b_v-z_v}\sqrt{\theta})$ where $\theta = \sqrt[n]{a} \in B_v$ and $\sqrt[n_0/n_0'p_v^{b_v-z_v}\sqrt{\theta}$ is a root of $X^{n_0/n_0'p_v^{b_v-z_v}} \theta \in B_v[X]$. Since $\varepsilon_{n_0/n_0'p_v^{b_v-z_v}}$ belongs to $B_v = \mathbb{Q}(\varepsilon_m, \varepsilon_{n_0/p_v^{b_v-z_v}}, \sqrt[n]{a})$, F_v/B_v is cyclic of degree dividing $p_1^{b_1-1} \cdots p_t^{b_t-1} \cdot p_{t+1}^{b_{t+1}} \cdots p_v^{b_v} \cdots p_s^{b_s}$.
 - (iv) $A_v = F_v(\varepsilon_{n_0}) = F_v(\varepsilon_{n_0^{b_v-z_v}})$, so $\mathcal{G}(A_v/F_v) \cong \mathcal{G}(\mathcal{L}_0/\mathcal{F}_v)$.
 - (v) $B_v = K(\varepsilon_{n_0/n_v^{b_v-z_v}})$, so $\mathcal{G}(B_v/K) \cong \mathcal{G}(\mathcal{F}_v/K)$.

$$\mathcal{L}_{0} = k(\varepsilon_{n_{0}}) \xrightarrow{L_{0}} \mathcal{L}_{0} = k(\varepsilon_{n_{0}}, \sqrt[n']{a}) = \mathcal{L}_{0}(\sqrt[n]{a})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Thus from (ii), L_0/A_v is cyclic of order $p_v^{w_v}$ with $w_v \leq z_v$, so

$$N_{L_0/A_v}(\Omega/k^*) = N_{L_0/A_v}\langle \varepsilon_m, \varepsilon_{n_0'}, \sqrt[n'q]{a}\rangle k^* = \langle \varepsilon_m k^*, \varepsilon_{n_0'}^{p_v^{w_v}} k^*, \sqrt[n'q]{a}^{p_v^{w_v}} k^*\rangle,$$

and this is equal to Ω/k^* because $\gcd(n_0', p_v) = 1$ for $t+1 \le v \le s$. Hence

$$\begin{split} H^2(L_0/A_v,\Omega/k^*) &= \frac{(\Omega/k^*)^{\mathcal{G}(L_0/A_v)}}{N_{L_0/A_v}(\Omega/k^*)} = 1 \\ &= H^0(L_0/A_v,\Omega/k^*) = H^1(L_0/A_v,\Omega/k^*). \end{split}$$

So the exact sequence

$$H^2(A_v/k, \Omega/k^*) \to H^2(L_0/k, \Omega/k^*) \to H^2(L_0/A_v, \Omega/k^*)$$

yields the isomorphism $H^2(A_v/k, \Omega/k^*) \cong H^2(L_0/k, \Omega/k^*)$.

From (iv), $A_v = F_v(\varepsilon_{p_v^{b_v-z_v}})$ and $\mathcal{G}(A_v/F_v) \cong \mathcal{G}(\mathcal{L}_0/\mathcal{F}_v)$ cyclic, so the invariant set Ω/k^* by $\mathcal{G}(A_v/F_v)$ corresponds to $\mu(\mathcal{K})/k^*$ by $\mathcal{G}(\mathcal{L}_0/\mathcal{F}_v)$. Thus

$$H^2(A_v/F_v,\Omega/k^*) \cong H^2(\mathcal{L}_0/\mathcal{F}_v,\mu(\mathcal{K})/k^*).$$

Since $H^2(\mathcal{L}_0/\mathcal{F}_v, \mu(\mathcal{K})) \hookrightarrow H^2(\mathcal{L}_0/\mathcal{F}_v, \mu(\mathcal{L}_0)) = 1$ by Janusz theorem, we have $H^2(\mathcal{L}_0/\mathcal{F}_v, \mu(\mathcal{K})) = 1$. Moreover since $H^2(\mathcal{L}_0/\mathcal{F}_v, \mu(\mathcal{K})) \to H^2(\mathcal{L}_0/\mathcal{F}_v, \mu(\mathcal{K}))$ / k^*), we have

$$H^{2}(\mathcal{L}_{0}/\mathcal{F}_{v},\mu(\mathcal{K})/k^{*})=1=H^{2}(A_{v}/F_{v},\Omega/k^{*}).$$

So we obtain the isomorphism $H^2(F_v/k,\Omega/k^*) \cong H^2(A/k,\Omega/k^*)$ from the exact sequence $H^2(F_v/k,\Omega/k^*) \to H^2(A_v/k,\Omega/k^*) \to H^2(A_v/F_v,\Omega/k^*) = 1$.

We therefore have the isomorphisms

$$H^{2}(L/k, \Omega/k^{*}) \cong H^{2}(L_{0}/k, \Omega/k^{*}) \cong H^{2}(A_{v}/k, \Omega/k^{*})$$

$$\cong H^{2}(F_{v}/k, \Omega/k^{*}).$$

Now from (v), $B_v = K(\varepsilon_{n_0/p_v^{b_v-z_v}})$ and $\mathcal{G}(B_v/K) \cong \mathcal{G}(\mathcal{F}_v/\mathcal{K})$ cyclic. As above,

$$H^2(B_v/K, \Omega/k^*) \cong H^2(\mathcal{F}_v/K, \mu(K)/k^*) = 1.$$

Thus $H^2(K/k,\Omega/k^*)\to H^2(B_v/k,\Omega/k^*)\to H^2(B_v/K,\Omega/k^*)=1$ is exact, so the isomorphism $H^2(K/k,\Omega/k^*)\cong H^2(B_v/k,\Omega/k^*)$ follows.

However we observe that $H^2(B_v/k,\Omega/k^*)$ is not isomorphic to $H^2(F_v/k,\Omega/k^*)$. In fact, F_v/B_v is cyclic of degree d dividing $p_1^{b_1-1}\cdots p_t^{b_t-1}\cdot p_{t+1}^{b_{t+1}}\cdots p_v^{z_v}\cdots p_s^{b_s}$ by (iii). Thus the $N_{F_v/B_v}(\Omega/k^*)=N_{F_v/B_v}\langle \varepsilon_m k^*, \ \varepsilon_{n_0'}k^*, \ {}^{n_0'}\sqrt{a}k^*\rangle = \langle \varepsilon_m k^*, \varepsilon_{n_0'}k^*, \ {}^{n_0'}\sqrt{a}k^*\rangle \neq \Omega/k^*$, because $\gcd(d,n_0')$ need not be 1.

The exact correspondence of Theorem 2 with respect to radical extension is to show $H^2(K/k,\Omega_K/k^*)\cong H^2(L/k,\Omega_L/k^*)$ where $K=k(\Omega_K)< L=k(\Omega_L)$. Instead of this, we proved in Theorem 10 that $H^2(K/k,\Omega_K/k^*)\cong H^2(L/k,\Omega_K/k^*)$ which is a subgroup of $H^2(L/k,\Omega_L/k^*)$. We have discussed a radical extension field with one n-th root of an element in k. The next theorem is about a radical extension having more than one n-th root.

Theorem 12. Let $k = \mathbb{Q}(\varepsilon_m)$. Write $m = p^z m'$ and $n_i = p^{b_i} n'_i$ (i = 1, 2) with an odd prime $p \not| m' n'_1 n'_2$, and $z, b_i \ge 0$. Let $L = k(\sqrt[n]{a_1}, \sqrt[n]{a_2}) = k(\Omega_L)$, $F = k(\sqrt[n]{a_1}, \sqrt[n]{a_2}) = k(\Omega_F)$, and $K = k(\sqrt[n]{a_1}, \sqrt[n]{a_2}) = k(\Omega)$ be Galois radical extensions of k. Assume $b_i \le z$ for i = 1, 2. Then

- (i) $N_{F/K}(\Omega_F/k^*) = \Omega/k^* = N_{L/K}(\Omega_L/k^*).$
- (ii) Moreover, $H^2(L/k, \Omega/k^*) \cong H^2(F/k, \Omega/k^*) \cong H^2(K/k, \Omega/k^*)$.

Proof. We may write the Galois radical extensions of k by

$$\begin{split} K &= k(\varepsilon_{n_i'}, \sqrt[n_i']{a_1}, \sqrt[n_i']{a_2}) < F = k(\varepsilon_{n_1'}, \varepsilon_{n_2}, \sqrt[n_i']{a_1}, \sqrt[n_2]{a_2}) \\ &< L = k(\varepsilon_{n_i}, \sqrt[n_i']{a_1}, \sqrt[n_i']{a_2}) \end{split}$$

(i = 1, 2). Since $p^{b_i} \leq p^z$ and $\varepsilon_{p^z} \in k$, we have $\varepsilon_{p^{b_i}} \in k < K$. Together with $\varepsilon_{n'_i} \in K$, it follows that ε_{n_i} belongs to K. Hence

$$F = k(\sqrt[n'_2]{a_1}, \sqrt[n_2]{a_2}) = K(\sqrt[p^{b_2}]{\lambda_2}), \text{ where } \lambda_2 = \sqrt[n'_2]{a_2} \in K$$

and ${}^{p^b2}\sqrt{\lambda_2}$ is a root of $X^{p^b2}-\lambda_2\in K[X]$. Thus F/K is a cyclic extension of degree p^{c_2} with $c_2\leq b_2$. And the minimal polynomial over K of ${}^{p^b2}\sqrt{\lambda_2}\in F$ is $X^{p^{c_2}}-{}^{p^b2}\sqrt{\lambda_2}{}^{p^{c_2}}\in K[X]$. Thus ${}^{n_2}\!\sqrt{a_2}{}^{p^{c_2}}\in K$ and ${}^{n_2}\!\sqrt{a_2}{}^{p^{c_2}}\in \langle {}^{n_2}\!\sqrt{a_2}\rangle$. Moreover the cyclic group $\mathcal{G}(F/K)$ is generated by σ such that

$$\sigma(\sqrt[p^{b_2}]{\lambda_2}) = \varepsilon_{p^{c_2}} \sqrt[p^{b_2}]{\lambda_2}, \text{ i.e., } \sigma(\sqrt[n_2]{a_2}) = \varepsilon_{n_2}^{p^{b_2-c_2}n_2'} \sqrt[n_2]{a_2}.$$

Now for the Galois extension L over F,

$$L = k(\sqrt[n_1]{a_1}, \sqrt[n_2]{a_2}) = F(\sqrt[p^{b_1}]{\lambda_1}), \text{ where } \lambda_1 = \sqrt[n'_1]{a_1} \in F$$

and $p^{b_1}\sqrt{\lambda_1}$ is a root of $X^{p^{b_1}} - \lambda_1 \in F[X]$. Since $\varepsilon_{p^{b_1}} \in F$, L/F is cyclic of degree p^{c_1} for $c_1 \leq b_1$. Then $\frac{n_1}{n_1}\sqrt{a_1}^{c_1} \in F$ and

$$\mathcal{G}(L/F) = \langle \tau \rangle$$
 such that $\tau(\sqrt[n]{a_1}) = \varepsilon_{n_1}^{p^{b_1 - c_1} n'_1} \sqrt[n]{a_1}$.

We shall compute the norm $N_{F/K}$ on $\Omega_F/k^* = \langle \varepsilon_{n_1'}, \varepsilon_{n_2}, \sqrt[n_2']{a}, \sqrt[n_2']{a} \rangle k^*$ that

$$N_{F/K}\langle arepsilon_{n_1'} k^*
angle = \langle \prod_{i=0}^{p^{c_2}-1} \sigma^i(arepsilon_{n_1'} k^*)
angle = \langle arepsilon_{n_1'}^{p^{c_2}} k^*
angle \leq \langle arepsilon_{n_1'} k^*
angle,$$

and the equality holds because $1 = \gcd(n'_1, p)$. Similarly

$$\begin{split} N_{F/K}\langle \varepsilon_{n_2} k^* \rangle &= N_{F/K}\langle \varepsilon_{n_2'} k^* \rangle = \langle \varepsilon_{n_2}^{p^{c_2}} k^* \rangle = \langle \varepsilon_{n_2'} k^* \rangle, \\ N_{F/K}\langle \sqrt[n']{a_1} k^* \rangle &= \langle \prod_{i=0}^{p^{c_2}-1} \sigma^i (\sqrt[n']{a_1} k^*) \rangle = \langle \sqrt[n']{a_1}^{p^{c_2}} k^* \rangle \leq \langle \sqrt[n']{a_1} k^* \rangle, \end{split}$$

and the equality $N_{F/K}\langle \sqrt[n']{a_1}k^*\rangle = \langle \sqrt[n']{a_1}k^*\rangle$ holds, for $1 = \gcd(n'_1, p)$. Moreover

$$\begin{split} N_{F/K} \langle \sqrt[n_2]{a_2} \ k^* \rangle &= \langle \prod_{i=0}^{p^{c_2}-1} \sigma^i (\sqrt[n_2]{a_2} k^*) \rangle \\ &= \langle \varepsilon_{n_2}^{p^{b_2-c_2} n_2' (1+\dots+(p^{c_2}-1))} \sqrt[n_2]{a_2} \sqrt[p^{c_2} k^* \rangle \\ &\leq \langle \sqrt[n_2]{a_2}^{p^{c_2}} \rangle \leq K, \quad \text{i.e., } \langle \sqrt[n_2]{a_2}^{p^{c_2}} \rangle \leq \sqrt[n_2']{a_2} \rangle \leq K. \end{split}$$

Since orders of $\sqrt[n_2]{a_2}^{p^{c_2}}$ and $\sqrt[n'_2]{a_2}$ over K are $n'_2p^{b_2-c_2}$ and n'_2 respectively, and $n'_2p^{b_2-c_2} \geq n'_2$, the equality $N_{F/K} \langle \sqrt[n_2]{a_2} k^* \rangle = \langle \sqrt[n'_2]{a_2} \rangle$ follows. Thus we have

$$N_{F/K}(\Omega_F/k^*) = \langle \varepsilon_{n_1'}k^*, \varepsilon_{n_2'}k^*, \sqrt[n_1']{a_1}k^*, \sqrt[n_2']{a_2}k^* \rangle = \Omega/k^*.$$

On the other hand, we shall observe that $N_{L/F}(\Omega_L/k^*) \neq \Omega_F/k^*$. In fact, since $\mathcal{G}(L/F) = \langle \tau \rangle$ with $\tau(\sqrt[n_1]{a_1}) = \varepsilon_{n_1}^{(p_1^{b_1-c_1})n'_1} \sqrt[n_1]{a_1}$ for $0 \leq i \leq p^{c_1} - 1$, and since $\varepsilon_{n_1}, \varepsilon_{n_2} \in K < F$, it is easy to see that

$$\begin{split} N_{L/F}\langle \varepsilon_{n_1} k^* \rangle &= \langle \prod_i \tau^i(\varepsilon_{n_1} k^*) \rangle = \langle \prod_i \tau^i(\varepsilon_{n_1'} k^*) \rangle \\ &= \langle \varepsilon_{n_1'}^{p^{c_1}} k^* \rangle = \langle \varepsilon_{n_1'} k^* \rangle, \\ N_{L/F}\langle \varepsilon_{n_2} k^* \rangle &= \langle \prod_i \tau^i(\varepsilon_{n_2} k^*) \rangle = \langle \prod_i \tau^i(\varepsilon_{n_2'} k^*) \rangle \\ &= \langle \varepsilon_{n_1'}^{p^{c_1}} k^* \rangle = \langle \varepsilon_{n_2'} k^* \rangle, \end{split}$$

and

$$\begin{split} N_{L/F} \langle \sqrt[n_1]{a_1} k^* \rangle &= \langle \prod_i \tau^i (\sqrt[n_1]{a_1} k^*) \rangle \\ &= \langle \varepsilon_{n_1}^{p_1^{b_1-c_1}} n_1' (1 + \dots + (p^{c_1}-1)) \sqrt[n_1]{a_1}^{p^{c_1}} k^* \rangle \\ &= \langle \sqrt[n_1]{a_1}^{p^{c_1}} k^* \rangle < \langle \sqrt[n_1]{a_1} k^* \rangle, \quad \text{for } \sqrt[n_1]{a_1}^{p^{c_1}} \in F, \end{split}$$

(products run over $0 \le i \le p^{c_1} - 1$). Comparing the orders $|\langle \sqrt[n]{a_1}^{p^{c_1}} k^* \rangle| = n'_1 p^{b_1 - c_1} \ge n'_1 = |\langle \sqrt[n]{a_1} k^* \rangle|$ over F, we have $N_{L/F} \langle \sqrt[n]{a_1} k^* \rangle = \langle \sqrt[n]{a_1} k^* \rangle$. But

$$N_{L/F}\langle \sqrt[n2]{a_2}k^*
angle = \langle \prod_{i=0}^{p^{c_1}-1} au^i(\sqrt[n2]{a_2}k^*)
angle = \langle \sqrt[n2]{a_2}^{p^{c_1}}k^*
angle < \langle \sqrt[n2]{a_2}k^*
angle.$$

However, we will show that $N_{L/K}(\Omega_L/k^*) = \Omega/k^*$. Owing to the chain rule of the norm map, we obtain

$$N_{L/K}\langle \varepsilon_{n_1}k^*\rangle = N_{F/K}\langle \varepsilon_{n_1'}k^*\rangle = \langle \varepsilon_{n_1'}k^*\rangle$$
, and similarly $N_{L/K}\langle \varepsilon_{n_2}k^*\rangle = \langle \varepsilon_{n_1'}k^*\rangle$ and $N_{L/K}\langle v_{\downarrow}\sqrt{a_1}k^*\rangle = \langle v_{\downarrow}\sqrt{a_1}k^*\rangle$. Furthermore

$$\begin{split} N_{L/K} \langle \sqrt[n2]{a_2} k^* \rangle &= N_{F/K} \langle \sqrt[n2]{a_2}^{p^{c_1}} k^* \rangle = \langle \prod_{i=0}^{p^{c_2}-1} \sigma^i (\sqrt[n2]{a_2}^{p^{c_1}} k^*) \rangle \\ &= \langle \varepsilon_{n_2}^{p^{b_2-c_2} n_2' (1+\dots+(p^{c_2}-1)) \cdot p^{c_1}} \sqrt[n2]{a_2}^{p^{c_1} p^{c_2}} k^* \rangle \\ &= \langle \sqrt[n2]{a_2}^{p^{c_1}} k^* \rangle = \langle \sqrt[n2]{a_2} k^* \rangle. \end{split}$$

Hence it follows that

$$N_{L/K}(\Omega_L/k^*) = \langle \varepsilon_{n_1'} k^*, \varepsilon_{n_2'} k^*, \sqrt[n_1']{a_1} k^*, \sqrt[n_2']{a_2} k^* \rangle = \Omega/k^*.$$

Now to prove the isomorphism $H^2(L/k, \Omega/k^*) \cong H^2(K/k, \Omega/k^*)$ in (ii), we shall refer to the proof of Theorem 9. Since $\mathcal{G}(F/K)$ is cyclic of order p^{c_2} , invoking the computation of norm map before, we have

$$N_{F/K}(\Omega/k^*) = \langle \varepsilon_{n_1'}^{p^{c_2}} k^*, \varepsilon_{n_2'}^{p^{c_2}} k^*, \sqrt[n']{a_1}^{p^{c_2}} k^*, \sqrt[n']{a_2}^{p^{c_2}} k^* \rangle$$

$$= \langle \varepsilon_{n_1'} k^*, \varepsilon_{n_2'} k^*, \sqrt[n']{a_1} k^*, \sqrt[n']{a_2} k^* \rangle$$

$$= \Omega/k^* = (\Omega/k^*)^{\mathcal{G}(F/K)}$$

for $gcd(p, n'_1) = gcd(p, n'_2) = 1$. Thus

$$H^{2}(F/K, \Omega/k^{*}) = H^{0}(F/K, \Omega/k^{*}) = \frac{(\Omega/k^{*})^{\mathcal{G}(F/K)}}{N_{F/K}(\Omega/k^{*})} = 1,$$

so that $H^2(F/K,\Omega/k^*)=H^1(F/K,\Omega/k^*)=1$ due to the Herbrant quotient. Hence the exact sequence

$$1 \to H^2(K/k, \Omega/k^*) \stackrel{\text{inf}}{\to} H^2(F/k, \Omega/k^*) \stackrel{\text{res}}{\to} H^2(F/K, \Omega/k^*) = 1$$

gives rise to the isomorphism $H^2(K/k,\Omega/k^*)\cong H^2(F/k,\Omega/k^*)$.

Similarly, with the cyclic group $\mathcal{G}(L/F)$ of order p^{c_1} , we get

$$N_{L/K}(\Omega/k^*) = \langle \varepsilon_{n_1'}^{p^{c_1}}, \varepsilon_{n_2'}^{p^{c_1}}, \sqrt[n']{a_1}^{p^{c_1}}, \sqrt[n']{a_2}^{p^{c_1}} \rangle k^* = \Omega/k^* = (\Omega/k^*)^{\mathcal{G}(L/K)},$$

so $H^1(L/F,\Omega/k^*)=H^2(L/F,\Omega/k^*)=H^0(L/F,\Omega/k^*)=1.$ Thus the sequence

$$1 \to H^2(F/k, \Omega/k^*) \stackrel{\text{inf}}{\to} H^2(L/k, \Omega/k^*) \stackrel{\text{res}}{\to} H^2(L/F, \Omega/k^*) = 1$$

yields an isomorphism $H^2(F/k,\Omega/k^*)\cong H^2(L/k,\Omega/k^*)$.

Remark 3. Due to Theorem 12, we now can generalize the reduction of cohomology on radical groups having finitely many n-th roots.

In Theorem 11, we furthermore assume that each $\sqrt[n]{a_i}$ is a root of an irreducible binomial polynomial $X^{n_i} - a_i$ in k[X]. Then we can observe that the degrees [F:K] and [L:F] are exactly equal to p^{b_2} and p^{b_1} respectively. In fact, since $X^{n_2} - a_2$ is irreducible over k, a_2 does not belong to k^r for all primes divisors r of n_2 due to [8, 16.6]. But since $n_2 = p^{b_2}n'_2$, $a_2 \notin k^p$. Thus $a_2 \notin k^{pn'_2}$ and $\sqrt[n]{a_2} \notin k^p$. Moreover it can be seen that $\sqrt[n]{a_2} \notin \langle \sqrt[n]{a_i} \rangle^p$ for i = 1, 2. Thus $\sqrt[n]{a_2} = \lambda_2$ does not belong to $k^p (\sqrt[n]{a_1}, \sqrt[n]{a_2})^p = K^p$, so it follows from [8, 16.6] that $X^{p^{b_2}} - \lambda_2$ is irreducible over K. Hence $[F:K] = p^{b_2}$.

Similarly since $L = F(\sqrt[p^b]{\lambda_1})$ where $\sqrt[p^b]{\lambda_1}$ is a root of $X^{p^b_1} - \sqrt[n]{a_1} \in F[X]$, and $X^{n_1} - a_1$ is irreducible over k, $a_1 \notin k^p$ so $a_1 \notin k^{pn'_1}$, i.e., $\sqrt[n']{a_1} \notin k^p$. Clearly $\sqrt[n']{a_1}$ does not belong to $\langle \sqrt[n']{a_1} \rangle^p$ and $\langle \sqrt[n^2]{a_2} \rangle^p$, so $\lambda_1 = \sqrt[n']{a_1} \notin k^p (\sqrt[n]{a_1}, \sqrt[n^2]{a_2})^p = F^p$, so $X^{p^{b_1}} - \lambda_1$ is irreducible over F. Since $\varepsilon_{p^{b_1}} \in F$, L/F is cyclic of degree p^{b_1} .

5. Cohomological characterization of Brauer subgroups

We give our final observation with regard to Schur and radical subgroups of Brauer group. Let A be a Schur k-algebra. The set of similarity classes [A] of A forms the Schur subgroup S(k) of the Brauer group B(k). Let L be a finite Galois extension of k. Then there is a restriction homomorphism $S(k) \to S(L)$ defined by the tensor product $[A] \mapsto L \otimes_k [A]$ for $[A] \in S(k)$. The kernel S(L/k) of the homomorphism, called relative Schur group, consists of Schur k-algebra classes split by L. Analogously, the set of similarity classes of radical k-algebras forms the radical group R(k). And for a finite Galois extension L

of k, the kernel of the restriction $R(k) \to R(L)$ is the relative radical group R(L/k).

A well known theorem of Brauer-Witt provides an interpretation of Schur algebra as cyclotomic algebra, so S(k) can be characterized cohomologically. An analog was conjectured in [2] that every projective Schur algebra is represented by a radical algebra so that a nice cohomological description can be provided on PS(k). On the other hand, it has been verified cohomological characterizations for radical group in [2, 1.5] and for relative radical group in [5, Theorem 7].

Theorem 13. [5, Theorem 7] Let $L = k(\Omega)$ be a finite Galois radical extension of k. Then R(L/k) is isomorphic to $H^2_{\iota}(L/k)$, where $H^2_{\iota}(L/k)$ is the image of a canonical homomorphism ι of $H^2(L/k,\Omega)$ to $H^2(L/k,L^*)$.

In particular if $L = k(\varepsilon_n)$ then S(L/k) is isomorphic to $H^2(L/k) = H^2(L/k)$, $\langle \varepsilon_n \rangle$) (Corollary 8 [5]). Moreover by employing Theorem 2, if $k \leq \mathbb{Q}(\varepsilon_m)$ and n and n' are the same as in Theorem 2, then the following diagram is commutative:

$$(4) \qquad \begin{array}{c} H_{\iota}^{2}(k(\varepsilon_{n'})/k) \stackrel{\inf_{k(\varepsilon_{n'}) \to k(\varepsilon_{n})}}{\to} H_{\iota}^{2}(k(\varepsilon_{n})/k) \\ \downarrow \cong \qquad \qquad \cong \downarrow \\ S(k(\varepsilon_{n'})/k) \stackrel{\cong}{\to} \qquad S(k(\varepsilon_{n})/k) \end{array}$$

where all vertical and horizontal arrows are isomorphisms. This diagram provides a stronger relationship than that of Brauer and cohomology groups: for a Galois extension k < L < E, the diagram is commutative: (see [10, p.252], [11, p.159])

$$\begin{array}{ccc} H^2(L/k) & \xrightarrow{\inf} & H^2(E/k) \\ \downarrow \cong & \cong \downarrow \\ B(L/k) & \longrightarrow & B(E/k) \end{array}$$

in which only vertical arrows are isomorphisms. Owing to Theorem 10, we obtain a diagram of radical and cohomology groups as following.

Theorem 14. Let $L = k(\Omega)$ and $L_0 = k(\Omega_0)$ be radical extensions of k satisfying the same context as in Theorem 10. Then there is a homomorphism $\chi: R(L_0/k) \to R(L/k)$ that makes the following diagram commute.

$$(5) \begin{array}{cccc} & H^2(L_0/k) & \xrightarrow{\longrightarrow} & H^2(L/k, \Omega_0) \\ & \downarrow & & \downarrow \\ & \downarrow & & \downarrow \\ & \downarrow & & \downarrow \\ & \downarrow^2(L_0/k) & & \downarrow^2(L/k) \\ & \downarrow^2 & & \cong \downarrow \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ &$$

Proof. We first note a difference here from (4) that $H^2(L/k, \Omega) \to H^2(L/k, L^*)$ need not be one to one. Hence the vertical arrows $H^2(L_0/k, \Omega_0) \to H^2(L_0/k)$ and $H^2(L/k, \Omega) \to H^2(L/k)$ are only surjective homomorphisms.

The two vertical isomorphisms in the above diagram are due to Theorem 13. By Theorem 10, we have an isomorphism $\psi: H^2(L_0/k, \Omega_0/k^*) \to H^2(L/k, \Omega_0/k^*)$. Moreover since the surjection $\Omega_0 \to \Omega_0/k^*$ induces both homomorphisms

$$H^2(L_0/k,\Omega_0) \stackrel{\pi_1}{\rightarrow} H^2(L_0/k,\Omega_0/k^*)$$

and

$$H^2(L/k,\Omega_0) \stackrel{\pi_2}{\rightarrow} H^2(L/k,\Omega_0/k^*),$$

the homomorphism $H^2(L_0/k,\Omega_0) \stackrel{\chi_1}{\to} H^2(L/k,\Omega_0)$ makes the diagram commute:

$$\begin{array}{ccc} H^2(L_0/k,\Omega_0) & \stackrel{\chi_1}{\to} & H^2(L/k,\Omega_0) \\ \downarrow \pi_1 & & \downarrow \pi_2 \\ H^2(L_0/k,\Omega_0/k^*) & \stackrel{\psi}{\cong} & H^2(L/k,\Omega_0/k^*) \end{array}$$

Hence there exists a homomorphism $\chi: R(L_0/k) \to R(L/k)$ which makes the diagram (5) commute.

A characterization of R(L/k) by means of cohomology was given in Theorem 13 that there is an isomorphism $H^2_\iota(L/k) \cong R(L/k)$. An interesting cohomological description of radical group was proved in [2, Proposition 1.5] that if $L = k_{rad}$ is the maximal radical extension of k in an algebraic closure \bar{k} , then $\mu(\bar{k})$ is contained in L and there is a surjective homomorphism $H^2(L/k,\mu) \to R(k)$. One may also refer to the cohomological characterization of PNil(k) in Proposition 1.6 [2] where PNil(k) < B(k) consist of classes that may be represented by a projective Schur algebras of nilpotent type. It would be interesting to discover any relationships between $H^2(L/k,\Omega_L/k^*)$ and radical k-algebras split by $L = k(\Omega_L)$.

References

- [1] E. Aljadeff and J. Sonn, *Projective Schur algebras have abelian splitting fields*, J. Algebra **175** (1995), no. 1, 179–187.
- [2] _____, Projective Schur algebras of nilpotent type are Brauer equivalent to radical algebras, J. Algebra 220 (1999), no. 2, 401-414.
- [3] A. Babakhanian, Cohomological methods in group theory, Marcel Dekker Inc., New York, 1972.
- [4] E. Choi and H. Lee, Crossed product algebras over cyclotomic extension fields, Math. Japon. 50 (1999), no. 2, 207-210.
- [5] _____, The crossed product theorem for projective Schur algebras, Glasg. Math. J. 43 (2001), no. 1, 135-143.
- [6] G. Janusz, The Schur group of cyclotomic fields, J. Number Theory 7 (1975), no. 3, 345-352.
- [7] G. Karpilovsky, Projective representations of finite groups, Monographs and Textbooks in Pure and Applied Mathematics, 94, Marcel Dekker Inc., New York, 1985.

- [8] ______, Field Theory, Monographs and Textbooks in Pure and Applied Mathematics, 120, Marcel Dekker Inc., New York, 1988.
- [9] F. Lorenz and H. Opolka, Einfache Algebren und projektive Darstellungen über Zahlkörpern, Math. Z. 162 (1978), no. 2, 175–182.
- [10] I. Reiner, Maximal orders, London Math. Soc. Monogr. Ser. 5, London, Academic Press, New York, 1975.
- [11] J. P. Serre, Local Fields, Grad. Text. Math. 67, Springer-Verlag, NewYork, 1979.
- [12] E. Weiss, Cohomology of groups, Academic press, New York, 1969.
- [13] T. Yamada, The Schur subgroup of the Brauer group, Lect. Notes Math. 397, Springer-Verlag, NewYork, 1974.

DEPARTMENT OF MATHEMATICS HANNAM UNIVERSITY DAEJON 306-791, KOREA E-mail address: emc@hannam.ac.kr