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COHOMOLOGY GROUPS OF RADICAL EXTENSIONS

EunmM1 CHoI

ABSTRACT. If k is a subfield of Q(e,,) then the cohomology group H?(k
(en)/k) is isomorphic to H?(k(e,)/k) with ged(m,n’) = 1. This enables
us to reduce a cyclotomic k-algebra over k(en) to the one over k(e,s).
A radical extension in projective Schur algebra theory is regarded as an
analog of cyclotomic extension in Schur algebra theory. We will study
a reduction of cohomology group of radical extension and show that a
Galois cohomology group of a radical extension is isomorphic to that of a
certain subextension of radical extension. We then draw a cohomological
characterization of radical group.

1. Introduction

Let k be a field, &* be the multiplicative subgroup of k£ and p(k) be the group
of roots of unity in k. For a Galois extension L of k with Galois group G =
G(L/k) and for a 2-cocycle o € Z%(G,L*) = Z*(L/k, L"), a crossed product
algebra (L/k,a) = Zaeg Lu, with usu, = a(o,7)usr and u,z = o(x)u,
(x € L, 0,7 € G) is called a cyclotomic algebra if L is a cyclotomic extension of
k and o has values in u(L) (i.e., o € Z2(L/k,u(L))). Let H2(L/k) be the image
of a canonical homomorphism ¢ of H2(L/k, (L)) into H2(L/k, L*) induced by
the inclusion p(L) — L*. Since p(L) is a subgroup of the torsion group of
L*, v is injective ([7, p.91)), so we may identify H*(L/k,u(L)) = H2(L/k) <
H?(L/k,L*).

Suppose k is a subfield of the cyclotomic extension Q(e,,) (Q: the rational
number field, &,,: a primitive m-th root of unity). Let L = k(g,). Due to
[6], m and n are assumed to be either odd or divisible by 4. Then the Galois
cohomology group H2(L/k) is isomorphic to H2(K/k) where K = k(e,/) is a
subextension of L such that n’ is a certain divisor of n which is prime to m
(13, (7.12)]. Employing this result, Janusz’s reduction theorem on cyclotomic
algebras in [6] ([13, (7.9)]) follows that, a cyclotomic algebra (L/k,a) with
a € Z%(L/k, (L)) can be reduced to the case ged(m,n) = 1, i.e., to (K/k, 3)
where 3 is a 2-cocycle in Z?(K/k, u(K)) defined over the smaller group G(K/k).
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It is well known that every Schur k-algebra (a central simple k-algebra which
is a homomorphic image of a group algebra kG for a finite group G) is similar
to a cyclotomic k-algebra [13, (3.10)]. The idea of Schur algebra has been
generalized to a projective Schur algebra in [9] by replacing group algebra by
twisted group algebra; a projective Schur k-algebra is a central simple algebra
that is a homomorphic image of a twisted group algebra k®G for a finite group
G and o € Z2(G, k*).

The analogue of cyclotomic algebra in the theory of projective Schur algebra
is the radical algebra ([1]). A radical k-algebra is a crossed product algebra
(L/k, ) where L = k() is a finite Galois radical extension of k, 2 is a subgroup
of L* which is finite modulo k* (i.e., Q/k* finite), and a € Z%(L/k,L*) is
represented by a 2-cocycle with values in 2.

In this paper we study radical extensions and radical algebras, and obtain a
corresponding result to Janusz’s reduction theorem on radical extensions. We
derive a reduction of Galois cohomology groups over radical extension fields,
indeed prove that for a radical extension L of k, there exists a Galois radi-
cal extension K of k in L such that the cohomology group of G(L/k) is iso-
morphic to that of G(K/k) (in Theorem 10}. We then verify a cohomologi-
cal characterization of radical groups that a homomorphism of radical groups
R(K/k) — R(L/k) commutes with certain homomorphisms of cohomology
groups (in Theorem 14).

All notations are standard. H?(L/k, M) is the 2-dimensional cohomology
group H?(G, M) where G = G(L/k) and M is a G-module, while Z?(L/k, M)
is the 2-cocycle group. If M = L*, we write H2(L/k,L*) = H?(L/k). Let &4
(d > 0) denote a primitive d-th root of unity, a|b denote the division of b by a,
while a’||b denote the highest power ¢ of a to be a’|b.

2. Preliminaries

Lemma 1. ([13, 7.10]) Let H be a cyclic normal subgroup of G and M be a fi-
nite G-module. Let Ny = [],cp b If Nu(M) = M then inf: H*(G/H, M*)
~ H?*(G, M) is an isomorphism, where inf is the inflation map from G/H to
G and MY is the subset of M consisting of elements fized by H.

For finite Galois extensions K and L of k with K < L, the norm Ny g :

L— K,z ([1,e¢(1/x) o)(z) is a homomorphism for z € L. If H = G(L/K)
is normal in G = G(L/k), then Ny, sk corresponds to Ny in Lemma 1. In
particular it is clear that No(e ,,1)/Q(,.) (Epit1) = (€pr) = (pi+1)H for a prime
p and 7 > 0, thus the following theorem is due to Lemma 1.
Theorem 2. ([13, (7.12)]) Let k < Q&) and L = Q(em,e,). Let n/ =
4%p, ---ps where p; are distinct odd prime divisors of n not dividing m, and
§=1144|n, 4 fm; § =0 otherwise. Let K = Q(em,&n). Then H2(K/k) =
H2(L/K).

As a consequence of Theorem 2, Janusz proved the next theorem on algebras.
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Theorem 3. ([6], [13, (7.9)]) If k <.Q(em) then any cyclotomic algebra over k
is similar to the cyclotomic algebra (Q(em,&t)/k, @) witht=4%p;---ps; 6 =0
if 4m and & = 1 otherwise, where all p; are distinct odd primes not dividing
m.

Theorem 2 and 3 can be generalized to any cyclotomic extension field L
containing finitely many roots of unity in [4].

Theorem 4. Let k < Q(&y,) and L = Qem,enyy---1En, ). Let
n} = 4%p; - ps with distinct odd primes pjln1, pjtm (1 <5 <s)
and 8, = 1 if 4nq, 44 m; 61 =0 otherwise. And for 1 < i< w, let
n; =4%pi1 - Piu,

with pij|ng, pij 1 m(1 < j < u;), and pi; t ny(1 < v < 4) where p;; are distinct
odd primes, and 6; = 1 if 4|n;, 44 m, 4t n, (1 < v < i); §; = 0 otherwise.
Then H2(L/k) = H2(K/k) where K = Q(Em,€ns,---,€n,). Furthermore, a
crossed product algebra (L/k, ) with o € Z*(L/k, (L)) is similar to (K/k, 3)
where B is a 2-cocycle having values in u(K).

Proof. We will prove this when L = Q(&m,€n,,En,). Write nf = 4%p; - pg
and nj = 4%¢q; - -- g, where p; [resp. g;] are distinct odd prime divisors of ny
[resp. no] with p;{m, ¢;j{mand g {n; for 1 <i<s,1<j<u Andd =1
if 4lny, 41 m; d2 = 11if 4na, 41 m, 41 ny; and §; = dz = 0 otherwise.

Let K = Q(&m,En;,€ny) and E = Q(em,ena,anz). Then

k<K= Q(Emn’lasn’z) <E= Q(Emn’lagng)
for, ged(m,nl) = 1(¢ = 1,2). Since each ¢; in the factorization of n/, satisfies
gitmn}; 62 =1 if 4|ny and 4t mny; and J; =0 otherwise,

we are able to use Theorem 2 on K and E to get H2(K/k) = H2(E/k).
Moreover with [ = lem(m, ns), we have

E = Q(em;€ny)(€ny) = Qler, en) < L = Q(em, €ny)(€ny) = Qe €0y )
and each p; in the factorization of n satisfies
;i t l;‘ 61 =1 if4|n; and 44 I; and 6; =0 otherwise.
Thus by applying Theorem 2 to L and E, we have H2(E/k) = HZ(L/k).

Now the isomorphism (L/k, o) =2 (K/k, 8) of crossed product algebra with
a € Z%(L/k,u(L)), B € Z2(K/k, n(K)) follows immediately by Theorem 3. O
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3. Norm on radical extension fields

A field L is a (finite) radical extension of k if there is a subgroup  of L*
such that L = k(Q) and Q/k* is a (finite) torsion group. We may exhibit L by
k( /a1, ..., ™¢/0y) witha; € k* and n; > 0 (1 < i < w). Moreover if L = k(Q)
is a Galois extension over k, then Q is G(L/k)-invariant, so k() contains
enough roots of unity, i.e., L = k({en,, 3/ai|1 < i < w}) with primitive n;-th
roots of unity &,,. Clearly € is not determined uniquely, while Q/k* is unique
and finite.

The most interesting case of radical extension is L = k(A) with A € L*
and \"* € k. If L/k is Galois radical then we may regard L = k(en,A). In
particular if &, € k then L/k is a cyclic extension of degree dividing n(see [8,
Theorem 14.4]). The radical extension L = k()) is said to be srreducible if
degree [L : k] = n. Thus L/k is irreducible radical if and only if L = k()\) and
A € L* is a root of an irreducible polynomial X" — a € k[X], and, if and only
if the order of Ak* in L*/k* is equal to the degree of A over k.

Remark that, in case of a cyclotomic extension L = Q{em, €nyy- -+ €ny, ), the
reduction in Theorem 4 would follow immediately by taking n = lem(n,,.. .,
N ) and applying Theorem 2 to m and n. However when L = k( ~/a1, ..., "¢/ay)
is a Galois radical extension, to get a kind of reduction we need to know how
to choose n} from n; each other explicitly, not just taking n’ from n =lem of
ni’s.

Lemma 5. Let L = k() be a finite Galois radical extension of k. Then Q/k*
15 a finite G-module where G = G(L/k).

Proof. The finite group Q/k* has a G-module structure by defining an action
oA = o(XN)k* where ¢ € G and X € Q/k* such that A = Xk* for X € Q. O

We begin with a radical extension containing an n-th root of 1 # a € k*.

Theorem 6. Let k = Q(e,,) and K = k({/a) be a Galois radical extension
of k, where m and n are positive odd integers. For a prime p dividing n, let
E =k(*/a) and F = k(epn, ¥/a) be Galois radical extensions of k. Then
(i) E=F, or E/F is cyclic of degree p and Ng/p(€pn, *¥/a) = (€n, ¥a).
(ii) Purthermore we assume p*||m and p°||n.
a) If 0 < z < b then F/K is cyclic of degree p, and Np/k{€pn, ¥/a)

= (en, ¥/0”) < {en, ¥a).
b) Ifb < z then E =K, or F = K so Ng/k(pn, "/a) = (en, ¥a).
Proof. The Galois radical extensions K and F form
k < K = k(en, ¥a) < F = k(epn, Va) < E = k(gpn, %/a).

Since E = k( %/a) = F({/X) where A\ = {/a € F and ¢\ is aroot of X? — {/a €
F[X], and since ¢,, € F, E/F is a cyclic extension of degree dividing p [8,
Theorem 14.4]. Hence E = F or [E : F] = p.
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If [E: F] = p, any 0 € G(E/F) maps ?/a to a zero of XP"* — q, say
o( %/a) =€, /afor 0 <1< pn. But %/a” is a zero of X" —a, so %/a” € F*,
w/af = o(7/a’) = eBl, %/a” and Bl = 1. Thus! = tn forsomet =0,...,p—1.

Moreover since each o € G(E/F) leaves ¢, fixed, we have

(p\/‘) tn p\/a o (pn/“) 2tn p{)/_ . ,O_p—-l( p%) — Eéz;z—l)tn p{l/a’
hence it follows that

Ngp(Way= [ o(Wa)=ep 0D nfa? = /e,
oc€G(E/F)
Thus Ng/p( /a) = pW) = ({/a) and Ng/r(epn) = <6£n> = (en).
Suppose that m = p*m’ and n = pbn/ with ptm/n’. If 0 < 2z < b then
/ b+1 / / b+1 ’

p*m'p _m'p _ bt -
prged(m!, =) ged(ml,n) ¥ fomm{rm, )

lem{m, pn) =

and similarly lem(m, n) = p®lem(m/, n’). Set lem(m’,n’) = I. Then Q(&m, pn)
= Q(epp+1;) and Q(em, €n) = Q(epr;) because p {1, hence
@) _ (")
Qlem, pn) : Qlem, en)] = = =p
(Qem,eon) Qem 0] = “0my” = 59

(where ¢ is the Euler phi function), which shows that [F: K] =

Now each 7 € G(F/K) maps ey, € F to €}, for some 0 <1 < pn. Because
2, € K*, we have b, = 7(e8,) = eFl, hence p(l — 1) = 0 (mod pn) and
I =tn+1 with 0 <t < p. Indeed, the cyclic group G(F/K) of order p consists
of automorphisms 7 such that 7(ep,) = 5””’1 for 0 <t < p. Thus we have

pOY (t'n,+1) (p—1)
Nr/k(epn) = epn™=° = &pn Po= e

$0 Np/k{€pn) = (€5,) < (€n). Comparing the orders, we get Np/k (€pn)= (€n)-
And Ne/{3/a) = ([l eg(ry iy T(¥/a)) = (3/a") < (€n, ¥/a), this is (ii-a).

In case of m = p*m/, n = p’n’ with 0 < b < z, ged(m,pn) = pged(m,n),
lem(m, pn) = lem(m,n), so Q(em,epn) = Q(em,ey,) and [F : K] = 1. Hence
E =K, or [E: K] =pand Ng/k(epn, %/a) = Ng/p{epn, W/a) = (en, Va ).

O

We observe that the assumption in (ii-b), i.e., m = p*m/, n = p’n’ with
b < z implies that k¥ = Q(g,,,) already contains enough p-th roots of unity.

Corollary 7. Assume the same contert as in (ii-b) Theorem 6 for radical
extensions K = k({/a) = k(Qk) and E = k( */a) = k(Qg) with finite Qg /k*
and Qg/k*. If H=G(E/K) # 1 then Ng(Qgp/k*) = Qg /k*.

Proof. E = k(epn, "/a) is a cyclic extension of K = k(en, ¥/a) of degree p with
cyclic Galois group H. The mapping Ng = [, .4 0 in Lemma 1 determines
Nu(epn, "/a) = (€n, ¥/a) by Theorem 6. By the action in Lemma 5, we have
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NH(QE/k*) = NH<€pnk*, ”c/&k*) = <€nk*, %k*> = Qg /k".
a

We shall denote Ny (Q2g/k*) by the same notation Ng/x(Qg/k*) which
is the norm map. As a generalization of Theorem 6, we have the following
theorem.

Theorem 8. Let k = Q(e,,) and L = k({/a) = k(Q) be a Galois radical exten-
sion of k. Assume a prime p with p?||m and p°||n. Let F = k( “%/a) = k(QF)
be a Galois radical extension with L # F. If 0 < b < z then Np,p(Q/k*) =
Qr/k*.
Proof. Let E = k(g,, "/¥/a) be a Galois radical extension. Then

k < F = k(ensp, "%/a) < E = k(en, “¥/a) < L = k(en, ¥a),

and L = E({/X) where A = "¢/a € E and ¢/ is a root of a polynomial
XP — "%/ in E[X]. Since ¢, € E, L/E is a cyclic radical extension of degree
dividing p. So L = F or [L : E] = p. Because b < z, k contains enough p-th
roots of unity so £ = E. But since L # F, we have [L : F| = p and

NL/F<€n7 %> = <€§L7 W> = <€n/p, 1”%)'
Similar to Corollary 7, we consequently have Ny p(S2/k*) = QF /k*. O

4. Cohomology group on radical extension fields

We shall discuss cohomology groups over Galois radical extension fields, and
have a reduction of cohomology group that is an analog of Theorem 2. Let H
be a normal subgroup of G and M be a G-module. The inflation-restriction
sequence on cohomology group
) 1 B (G/H, M) S (G, )™ (M)
is exact if r = 1. When r > 1, the sequence is exact if H*(H, M) = 1 for all
1<i<r—1 (refer to [12, (3.4.2), (3.2.3)]).

Theorem 9. Let n = p°ng and m = p?mg with an odd prime p f nomg. Let
k = Q(em), and L = k(/a) = k() and Lo = k( "¢/a) = k() be Galois
radical extensions of k with L # Lo. If 0 < b < z then the inflation map is an
isomorphism on cohomology groups

inf
H?(Lo/k, Q0 /k") = H*(L/k, Qo/k")-
Proof. Obviously L = k(g,, ¥/a) and Ly = k(en,, ™/a). Since b < z, g is
contained in k < Lg so0 €, € Lg. Thus L = Lg{ ”\b/X) where A = "¢/a and /2
is a root of X?' — "¢/a in Ly [X]. So L/Lyg is cyclic of degree p© for some ¢ < b.

Due to Lemma 5, Q/k* is a G(L/k)-module with module action that, for
any 7 € G(L/k) and {/ak* € Q/k*, 7(ak*) = T(/a)k* = & ak* € Q/k*
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for some [ > 0. Similarly Qy/k* is a G(Lg/k)-module. Moreover it is easy to
see that Qg/k* is also a G(L/k)-module by regarding "¢/a as ({/a)?"
Write H = G(L/Lg). From the sequence of groups

1— g(L/LO) — g(L/k) — g(Lg/k) — 1,

we consider the inflation-restriction sequence

H(Lo/k, (0/k*)") B H2(L/k, Qo/k") ™ HY(L/Lo, R0/k").
Since H is cyclic, it follows from [12, (1.5.6)] and [12, (3.2.1)] that
(Qo/k*)H
NL/LO (Qo/k*) '

Every o € H leaves all elements in Qq/k* fixed, so (Qo/k*)¥ = Qy/k*. More-
over due to Theorem 8, we compute the norm Ny, directly to get

NL/LO(QO/k k* nQ/—P k* €n0k* n{’/_k*> Qo/k*

for ged(p®,np) = 1. Hence H2(L/L0,Qo/k*) =1

Again since H is finite cyclic and Qp/k* is a finite H-module, we use the
Herbrand’s quotient of Qg /k* (refer to [3, (23.2)]) that
|H2(L/ Lo, Qo/k*)|
|H*(L/ Lo, Q0/k*)]
hence it follows that H*(L/Lg,Qo/k*) = H?(L/Lo,$/k*) = 1. Therefore we
can conclude from (1) that the sequence

H*(L/Lo,Q0/k*) = H*(H,Q/k*) =

1= ho/1(Q0/k") =

1 — H2(Lo/k, (Q/k)) B B2(L/k, Q0 /k7) 5 H2(L/ Lo, Q0 /k*) =
is exact, so have an isomorphism H2(Lg/k,Qo/k*) = H2(L/k,Qo/k*). a

For a given finite radical extension L over k, we observed in Theorem 9
that the cohomology group over G(L/k) can be decreased down to that over
G(Lg/k), where Ly is the Galois radical extension of k smaller than L by ‘one’
prime factor power p®. We can strengthen this observation with the following
theorem which will go to reduction of Galois cohomology groups.

Theorem 10. Let k = Q(e,,) and L = k(/a) be the same fields as in Theorem
9. Assume n = pll’1 - pb with distinct primes p; and b; > 0. For each p;
(1 < i <), write m = p*m; (with p; 1 m; and z; > 0). Suppose b; < z; for
some 1 < i < wu, and after appropriate renumbering, we assume that b; < z; for
alls+1<i<wu. Let ng = plf -..pb, and let the Galois extensions be

Lo = k( "Q/—) = k({),
Ly = k(om0 riR/a) = k(Qy) for1<j<u—s.

Then HQ(L]'//C,Q]‘_I/,C*) = HQ(Lj_l/k,Qj_l/k*) fO'I" all 1 S _] S u— 8, S0
H?*(L/k,Q0/k*) and H?(Lo/k,Q0/k*) are isomorphic.
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Proof. Since Lo, L (1 < j < u— s) are all Galois radical extensions of k, and

since n = p&' -- psff coople =y - psff --pb», we have L,_s = L and

bs
k< Lo=k(en,, Wa) <Li=k(e by, "0"si0/a) <
T0Ps 11

a1 betj
< Lj = k(E bok1 bots "0Ps+1 ”S+J'\/E,) << Ly_g=0L.

T0Psi1 "'Pstj
Since m = pim; and 0 < b; < z; for s +1 < i < w, eache »; € k. Together

with €,, € Lo, € 5,41 b,.; belongto Lo foralll1 <j<u— 's. Hence
T0Ps+1 " Pstj

bstj

Lj=L;_1();), where \; € Lj and X, € L;_; (1 <j <u~—s),

and L;/L;j_1 is cyclic of degree p?’ ; for some ¢; < bsy;. Thus we have the
isomorphism on cohomology groups

H?(Ly/k, Qo/k*) = H*(Lo/k, Q0/k")
due to Theorem 9, and proceeding inductively we get
(2) H*(Lj/k, Qj_1/k*) =2 H*(Lj_1/k, Q_1/k*) foreach1<j<u—s.
Let H = G(Ly/Lg), and consider the inflation-restriction sequence
N f
(3)  HA(Lo/k, (Q0/k")) B H(Lo/k, /K) 5 HA(La/ Lo, R0 /K"),
Since Ls = L0(§) with §pz+1 P € Lo, Lo/ Lo is a cyclic radical extension of
degree dividing psff pi;, and in fact [Lo : Lo] = pgY 1p4,. Thus
H=G(Ly/Lo) = Zp p2, = Zpar, X Zy, = G(La/Ly1) x G(L1/Lo),

and by (7, (2.3.14)], we have

H?*(La/Lo,Q0/k*) =2 H*(Ly/L1,Q0/k*) x H*(L1/Lo, Q0 /k*).
But since p; { ng for s + 1 < 7 < u, we obtain

Niyy1o(Qo/k*) = (enok™, "Yak*)Pedr = Qo/k* = (Qo/k*)F1/Po

and similarly, Ny,/7,(Q/k*) = (Q/k*)Psr2 = Qo/k* = (Qo/k*)L2/Tr.

By the proof of Theorem 9, both H?(L,/L¢,Q/k*) and H?(La/Ly, Qo/k*)
are trivial groups, so that H2(Ly/Lg,Q/k*) = 1. Then again the Herbrand
quotient of Qy/k* is equal to 1, i.e.,

1= |H*(L2/Lo, 20 /k")l/|H" (L2/Lo, Qo/k")|-
So HY(Ly/Lo,8/k*) is trivial, and the inflation-restriction sequence (3) is
exact. We thus obtain the isomorphism on cohomology groups
inf
H?*(Lo/k,Q0/k*) = H?*(L2/k,Q0/k*).
And together with (2), it follows that
H?(Ly/k,Q/k*) = H?(Ly /K, Qo/k*) = H?(Lo/k, Qo /k").
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C

Applying this process to the cyclic group H = G(L3/Lo) of order pl ,p5,
pg 3 and to the sequence

H2(Lo/k, (Q0/k*)") o B2(L4/k, Q0 /k*) ™5 H2(Ls/ Lo, Q0/k"),

we also get H2(L3/Lo,Q0/k*) =1, for G(L3/Lo) = G(L3/La) X G(La/Lo) and
H?(L3/Ls,Q0/k*) = 1 = H*(Ly/ Lo, Qo /k*).

The exactness of the inflation-restriction sequence guarantees the isomor-
phism H2(L3/k,Qo/k*) = H?(Lo/k,Qo/k*). Continuing, we eventually get

H?(L/k,Q0/k*) = H*(Ly-s/k,Qo/k*) = H*(Lo/k, 0 /k").
0

Remark 1. In Theorem 10, we assume a = 1, i.e., ¥a = ¢, for n = pll’1 oo pbu
(odd primes). Suppose m = piim; with z; < b; for 1 <4 < s, and b; < 2
fors+1<i<u. Letng = pll’1 coopls, L = Q(em,en) and Lo = Q(&m, &ny )-
Then L = Lo and H?(L/k,Qr/k*) = H?(Lo/k,Q,/k*) (this is Theorem 10).
Moreover, by rearrangement if necessary, we assume 2; = --- = z; = 0 for
t <s,ie.,p; fmforl<i<t By letting ng = p; - p:, we can further reduce
the cohomology group by Janusz theorem that

H?(L/k, u(L)) = H*(Lo/k, (L)) = H*(k(eny)/k, p(k(eny)))-

Remark 2. Tt is natural to ask whether the Remark 1 is true for a¢ # 1 with the
same n and n}, i.e., is H2(k(/a)/k, ({/a)/k*) = H?(k( "¢/a)/k, (/a)/k*)?
The following proposition provides a partial answer.

Proposition 11. Let L = k({/a) be a Galois radical extension of k = Q(em).
Let n = pll71 oopbe (b; > 0, odd primes p;) and m = pfim; (2 > 0, p; fm)
for all i. By rearrangement, assume z; < b; for 1 <4 < s{< u), z; > b; for
s+ 1< i< u, and moreover z; = 0 for 1 < j < (< s). Set ng = pbr ... pbs
and nfy = py---p;. Let K = k("Y/a) = k(Q), and F, = k("0/=""7/a) and
B, = k(EnO/pgv—zv, "/a) be Galois radical extensions of k fort+1 < v < s.
Then H*(L/k,Q/k*) = H*(F,/k,Q/k*), H*(K/k,Q/k*) = H?(B,/k,Q/k*),
but H*(F,/k,Q/k*) 2 H?(By/k, Q/k*).

Proof. Let Ly = k( "¢/a) = k(Q11,) be a Galois radical extension of k. With
the integers n = p& - -pbe, ng = pi* - -pbe and ny =p; -+ -p; for t < s < w, it
is clear that k < K < Lo < L and H?(L/k,Qr,/k*) = H?(Lo/k,Qr,/k*) due
to Theorem 10. Hence it is follows that

H2(L/k,Q/k*) = H*(Lo/k, U/ k").

Let p, be one of pyy1,...,ps. Since m = pZ*m,, with 0 < 2, < b, the Galois
radical extensions of k are

K = k(gn/o, "é/a) < Fv - k(Eno/pz”_z"7 no/sz—z:/a) < L() — k(gn(w né/a)
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Now let K, F, and £y denote the cyclotomic extensions
K=Q(em eny) < Fy = Q(Em; €y poo—=0) < Lo = Q(€m, €ng)-

Owing to pf,"||;$z—u and e,:v € K, we have p, { [F, : K| and H%(F,/K,
w(Fy)) = H*(Lo/Fp, 11(Lo)) = 1. Thus due to Janusz theorem we have
H*(K/k, p(K)) 2 H*(F, [k, p(F)) = H?(Co/k, w(Lo)).
On the other hand, from the tower of fields
k< K =K("/a) < F, = F,(""" /a) < Lo = Lo( W),

by —z

consider a field A, = k(g,,, "o/
(i) K< B, <F, <A, <Ly
(i) Lo = A,("V/X) where A = "0/%"""}/g and **V/X is a root of XP¥* — )\ €

A,[X]. Since epzv € Ay, Lo/A, is a cyclic extension of order p¥* with w, < z,.
(iii) Similar to (ii), it can be seen that F, = B,( ™’ "6pgv_z(/6_) where 6 =

~/a € B, and mo/m672" TV/B is a root of XM0/meri T _ g ¢ B,[X]. Since

€ o fr gl =0 belongs to B, = Q{z,, Epg Jplv == "Wa), F,/B, is cyclic of degree
dividing py* 7 - pf Tt pg e pi o phe.
(iv) Ay = Fy(ep,) = Fv(EpngU), so G(Ay/Fy) 2 G(Lo/Fy).

(v) B, = K(eno/pg”_z”)’ so G(B,/K) = G(F.,/K).

V/a). We now observe the followings.

Lo = k(en,) Lo = k(en,, "/a) = Lo( "/a)
| SRVt

Fo = (€ ppto==2) F, = k(no/?" " /a) = F, (/7" Ya)
l f:"v = lEn jptp==vr "9/0)

K = k(eny) K =k(¥/a) =k(Q) = K(¥a)

Thus from (i), Lo/A, is cyclic of order p¥» with w, < z,, so

Nio/a, (k") = Nposa, (Emsny, "Valk™ = (enk™, €0 k", "a " k),
and this is equal to {2/k* because ged(ny,p,) =1 for t +1 < v < 5. Hence
L (/k)E A
Lo/ ) = e =1
= H%(Lo/A,,Q/k*) = HY(Lo/ Ay, Q/k*).
So the exact sequence
H*(Ay/k,Q/k") — H*(Lo/k,Q/k") — H*(Lo/ Ay, Q/k")
yields the isomorphism H?(A4,/k,Q/k*) = H?(Lo/k,Q/k*).
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From (iv), Ay = Fy(g pu-=0) and G(Ay/Fy) = G(Lo/Fy) cyclic, so the in-
variant set Q/k* by G(A,/F,) corresponds to u{KC)/k* by G(Lo/F,). Thus
HQ(Av/Fv, Q/k*) = HZ(L:O/]:va M(K)/k*)
Since H2(Lo/Fy, u(K)) — H2(Lo/Fy, u(Lo)) = 1 by Janusz theorem, we have
H2(Lo/Fy, u(K)) = 1. Moreover since H*(Lo/F,,, w(K)) — H*(Lo/Fp, 1(K)/
k*), we have
H*(Lo/Fo, w(K)/E*) = 1 = H*(Ay/Fy, Q/k").
So we obtain the isomorphism H?(F,/k,Q/k*) = H?(A/k,Q/k*) from the
exact sequence H?(F,/k,Q/k*) — H?(A,/k,Q/k*) — H*(A,/F,, Q/k*) = 1.
We therefore have the isomorphisms
H?(L/k,Q/k*) = H*(Lo/k, Q/k") = H* (A [k, Q/k")
~ H%(F,/k,QJK").
Now from (v), B, = K(Eno/pgv—zv) and G(B,/K) & G(F,/K) cyclic. As
above,
H?(B,/K,Q/k") = H*(F, /K, u(K) k") = 1.
Thus H%(K/k,Q/k*) — H?*(B,/k,Q/k*) — H?(B,/K,Q/k*) = 1 is exact, so
the isomorphism H?(K/k,Q/k*) = H?(B,/k,Q/k*) follows.
However we observe that H?(B, /k,Q/k*) is not isomorphic to H?( F,/k,Q/

k*). In fact, F, /B, is cyclic of degree d dividing p’{l_l ‘- -plt"‘1 -p?j:f R A
pbs by (iii). Thus the Np, /g, (Q/k*) = Np, /B, (emk”, ensk*, "Yak*) = (emk*,
sfllék*, n/a’k*) # Q/k*, because ged(d,n))) need not be 1. O

The exact correspondence of Theorem 2 with respect to radical extension
is to show H2?(K/k,Qx/k*) = H*(L/k,Qr/k*) where K = k(Qg) < L =
k(Qr). Instead of this, we proved in Theorem 10 that H?(K/k,Qk /k*) =
H?(L/k, /k*) which is a subgroup of H?(L/k, Qp/k*). We have discussed
a radical extension field with one n-th root of an element in k. The next
theorem is about a radical extension having more than one n-th root.

Theorem 12. Let k = Q(e,,). Write m = p*m’ and n; = pbn) (i = 1,2)
with an odd prime p fm/ninh, and z,b; > 0. Let L = k( /a1, /a2) = k(QL),
F = k( /a1, w/az) = k(Qr), and K = k(~/a1, "¢/az) = k(§2) be Galois

radical extensions of k. Assume b; < z for i =1,2. Then

() Np/x(Qr/k") =Q/k* = Ny (QL/E").
(ii) Moreover, H*(L/k,Q/k*) & H*(F/k,Q/k*) = H*(K/k,Q/k*).

Proof. We may write the Galois radical extensions of & by
K = k(en:, /a1, "¥/a2) < F = k(en;,€ny> "V01, "¥/a2)
< L = k(en,, Va1, ¥az)
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(i = 1,2). Since p* < p* and €p- € k, we have gy € k < K. Together with
€n) € K, it follows that ,, belongs to K. Hence

F = k( "/ay, "¢/az) = K("3/Xs), where \y = "4/az € K
and %/ is a root of XP"* — A, € K[X]. Thus F/K is a cyclic extension of
degree p°2 with c; < b3. And the minimal polynomial over K of P € F
°2 C C
is XP? — "YX? € K[X]. Thus /@’ € K and /@’ € (4/as).
Moreover the cyclic group G(F/K) is generated by o such that

by —co n!

b b
(P VX)) = epes "V g, e, o(%/az) =¢h, 2 n2fus.
Now for the Galois extension L over F,

L = k( /a3, /az) = F(*\/A1), where \; = {/a; € F

and *"¥/){ is a root of xP" _ A1 € F[X]. Since g5, € F, L/F is cyclic of
degree p® for ¢; < by. Then /a7 € F and

G(L/F) = (r) such that 7("/a1) = Eﬁbll_cl"'l "/a1.
We shall compute the norm Np g on Qp/k* = (€nf,€n,, "/a, "/a)k* that
p2-1

Nrypclen k™) = ( J] o%(eni k")) = (€0 k") < (em k),
i=0

and the equality holds because 1 = ged(ni,p). Similarly
Npjilen k™) = Npjxclenk™) = (e85, k") = (eayk"),

p2—1

Npy(ark®y = ([T o' (vakn) = (va" k") < {"yark”),
i=0

and the equality N/ ( "/a1k*) = (~/a1k*) holds, for 1 = ged(n},p). More-
over
p2—1
Nes{ #az k*y = ( [[ o*(¢/azk*))
=0
(T O ) ey

ny

<(%a?"y< K, ie, (%/a’ )< ("¥az) <K.

. ©2 — .
Since orders of ~g/az” ~ and "/ag over K are nbp2 =2 and n), respectively,

and nypP2~° > nh, the equality Npjk( "¢/az k*) = (¢/az) follows. Thus we
have »

Np/k (Qr/k*) = (en k", en K, ark®, "/agk™) = Q/k".
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On the other hand, we shall observe that Ny, p(Qr/k*) # Qr/k*. In fact,

since G(L/F) = (1) with 7( /a7) = 553;1 im ny/ay for 0 < i < p —1, and
since €,,,€n, € K < F, it i5 easy to see that

Ny o) = ([T 7 mk ) = (T e k)
= (spc,l E*) = <€n’1k*>’
Np/plenk HT Enk”)) = <H 7 (eny k"))
= (En; k*> = <5n’2k*>7
and .
Npyp{ /ack*) = <H 7T y/ark"))
b c1 n! <
<8n11 1 (14 (p®1 -1)) ng/a_” k*
= ".%/alJ k*) < "Q/—k* for "{/al

(products run over 0 < i < p°* —1). Comparing the orders | "g/alp k*)| =
niph 4 > nf = |( /aik*)| over F, we have Ny p( "/ark*) = ( %/ark*). But

Nir(/ak™) = ( [ #(w/@k") = (@’ k) < (~azk").
=0

However, we will show that Ny k(2 /k*) = /k*. Owing to the chain rule
of the norm map, we obtain
Ni/k{en,k*) = Nr/g (e k*) = (€ns k*), and similarly :
Nijk(enk*) = (€nyk*) and Np i ( ~/ark*) = ( ~/ark*). Furthermore
p°2~1

Niyx{ fazk*) = Neywe(e/a k) = ([ o*(o/a@" &)
3=0

(BT ) e

€ng
= (Y@ k) = (Yak).
Hence it follows that
Np/g(QL/k*) = (en k™, eny k%, "Yark™, g/azk™) = Q/k".
Now to prove the isomorphism H2(L/k,Q/k*) = H*(K/k,Q/k*) in (ii), we

shall refer to the proof of Theorem 9. Since G(F/K) is cyclic of order p®,
invoking the computation of norm map before, we have

NF/K(Q/k*) — <5f;12 k*,&fﬁ? k*, n’ F—pal c2 k?*, n?, ,_pa2 c2 k*>
= (et k", em k¥, "/ark®, /ask")
— Q/k* — (Q/k*)g(F/K)
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for ged(p,n}) = ged(p, nh) = 1. Thus

Q/k*)9F/K)

HY(F/K,Q/k*) = H°(F/K,Q/k* L ,
(F/K,0/k°) = BRI, 0/k) = 5E e s

so that H*(F/K,Q/k*) = HY(F/K,/k*) = 1 due to the Herbrant quotient.
Hence the exact sequence

1 — B2(K/k, k%) 2 2Rk, /60 S B2 (F/K, QK = 1

gives rise to the isomorphism H?(K/k,Q/k*) & H?(F/k,Q/k*).
Similarly, with the cyclic group G(L/F) of order p°*, we get

N (k%) = (&' e8! /™™, mifag?™ )i = Qfk* = (k") 00/,
so HY(L/F,Q/k*) = H*(L/F,Q/k*) = H°(L/F,Q/k*) = 1. Thus the sequence

1 — H?(F/k,Q/k*) inf HY(L/k, k)2 HY(L/F,Q/k*) =1
yields an isomorphism H?(F/k,Q/k*) =2 H*(L/k,Q/k*). O

Remark 8. Due to Theorem 12, we now can generalize the reduction of coho-
mology on radical groups having finitely many n-th roots.

In Theorem 11, we furthermore assume that each =~/a; is a root of an irre-
ducible binomial polynomial X" — a; in k[X]. Then we can observe that the
degrees [F : K] and [L : F] are exactly equal to p®2 and p> respectively. In
fact, since X™2 — ay is irreducible over k, a2 does not belong to k" for all primes
divisors 7 of ng due to [8, 16.6]. But since n, = p??nj, ag & kP. Thus ay & kP™2
and ¢/az ¢ kP. Moreover it can be seen that "g/ay & ( v/a;)P for i = 1,2.
Thus ~¢/az = Ay does not belong to kP ( ~y/a1, "/az)? = K?, so it follows from
8, 16.6] that X?"* — ), is irreducible over K. Hence [F : K| = pP2.

Similarly since L = F( *"{/X;) where *"¥/}] is a root of X?"* — ~i/a; € F[X],
and X™ — g, is irreducible over k, a; & kP so a; ¢ kpnﬁ, ie., w/a; & kP.
Clearly /a7 does not belong to ( »/a1)? and ( "¢/az)?, so A1 = ~y/a1 &
kP( ~/a1, "/az)? = FP, so XP™ — )\ is irreducible over F. Since ey € F,
L/F is cyclic of degree p".

5. Cohomological characterization of Brauer subgroups

We give our final observation with regard to Schur and radical subgroups of
Brauer group. Let A be a Schur k-algebra. The set of similarity classes [A] of
A forms the Schur subgroup S(k) of the Brauer group B(k). Let L be a finite
Galois extension of k. Then there is a restriction homomorphism S(k) — S(L)
defined by the tensor product [A] — L ® [A] for [A] € S(k). The kernel
S(L/k) of the homomorphism, called relative Schur group, consists of Schur
k-algebra classes split by L. Analogously, the set of similarity classes of radical
k-algebras forms the radical group R(k). And for a finite Galois extension L
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of k, the kernel of the restriction R(k) — R(L) is the relative radical group
R(L/k).

A well known theorem of Brauer-Witt provides an interpretation of Schur
algebra as cyclotomic algebra, so S(k) can be characterized cohomologically.
An analog was conjectured in [2] that every projective Schur algebra is rep-
resented by a radical algebra so that a nice cohomological description can be
provided on PS(k). On the other hand, it has been verified cohomological
characterizations for radical group in [2, 1.5] and for relative radical group in
[5, Theorem 7).

Theorem 13. [5, Theorem 7] Let L = k(Q) be a finite Galois radical extension
of k. Then R(L/k) is isomorphic to H2(L/k), where H?(L/k) is the image of
a canonical homomorphism v of H*(L/k,Q) to H?(L/k, L*).

In particular if L = k(e,,) then S(L/k) is isomorphic to H2(L/k) = H?(L/k,
(€4)) (Corollary 8 [5]). Moreover by employing Theorem 2, if k& < Q(em)
and n and n’ are the same as in Theorem 2, then the following diagram is
commutative:

infie ,y—rien

2 (k(en)/b) 2 HE k(o) B)
@) I 2]

o

S(k(en)/k) = S(k(en)/k)
where all vertical and horizontal arrows are isomorphisms. This diagram pro-
vides a stronger relationship than that of Brauer and cohomology groups: for
a Galois extension k < L < E, the diagram is commutative: (see [10, p.252],
[11, p.159])
(LK) L
B >

BL/k) —  B(E/K)

in which only vertical arrows are isomorphisms. Owing to Theorem 10, we
obtain a diagram of radical and cohomology groups as following.

H2(E/k)

Theorem 14. Let L = k() and Lo = k() be radical extensions of k sat-
1isfying the same context as in Theorem 10. Then there is o homomorphism
x : R(Lo/k) — R(L/k) that makes the following diagram commute.

H2%(Lo/k, Q) 25 H?(L/k, Q)
il
1 H?*(L/k,Q)
1
(5) H?(Lo/k) HZ(L/k)
1= =|

R(Lo/k) X, R(L/k)
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Proof. We first note a difference here from (4) that H2(L/k,Q) — H*(L/k,L*)
need not be one to one. Hence the vertical arrows H%(Lo/k, Qo) — H2(Lo/k)
and H?(L/k,¥) — H2(L/k) are only surjective homomorphisms.

The two vertical isomorphisms in the above diagram are due to Theo-
rem 13. By Theorem 10, we have an isomorphism v : H2%(Lo/k,Qo/k*)
— H%*(L/k,Q0/k*). Moreover since the surjection Qg — Qg/k* induces both
homomorphisms

H?(Lo/k,Q0) ™ H*(Lo/k,Q0/k")
and
HQ(L/k: QO) 3 H2(L/k7 QO/k*)a

the homomorphism H?(Lo/k,Q0) 5 H2(L/k,) makes the diagram com-
mute:

H*(Lo/k,Q) % H2(L/k,Q)
im 1 m

H(Lo/k, Qo/k*) & H2(L/K, Qo/k*)

Hence there exists a homomorphism x : R(Lg/k) — R(L/k) which makes the
diagram (5) commute. O

A characterization of R(L/k) by means of cohomology was given in The-
orem 13 that there is an isomorphism H2(L/k) = R(L/k). An interesting
cohomological description of radical group was proved in [2, Proposition 1.5]
that if L = kgq is the maximal radical extension of k in an algebraic clo-
sure k, then u(k) is contained in L and there is a surjective homomorphism
H?(L/k,u) — R(k). One may also refer to the cohomological characteriza-
tion of PNil{(k) in Proposition 1.6 [2] where PNil(k) < B(k) consist of classes
that may be represented by a projective Schur algebras of nilpotent type. It
would be interesting to discover any relationships between H2(L/k, 2y /k*) and
radical k-algebras split by L = k(Qy).
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