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COMPUTERS IN ALGEBRA:
NEW ANSWERS, NEW QUESTIONS

CHERYL E. PRAEGER

ABSTRACT. The use and development of computer technology by
algebraists over the last forty years has revolutionised the way in
which algebraists think about algebra, and the way they teach it
and conduct their research. This paper is a personal reflection on
these changes by a somewhat unwilling computer user.

1. Introduction

This paper is a personal reflection by a somewhat reluctant computer
user on the crucial role played by the computer in algebra research over
the past thirty years, and its likely future importance. Thirty years is
the extent of my personal knowledge, but computers have been used in-
novatively in algebra for more than forty years, and accounts of the very
early period can be found in [43, 57]. First came answers to several math-
ematical questions which demonstrated the power of computers. This
served to raise new questions thereby inspiring established researchers,
young mathematicians and computer scientists to channel their energies
into designing new algorithms and new computer algebra systems. As
a result the number-crunching devices of the 1970°s were transformed
into sophisticated oracles which seem almost to understand the way an
algebraist thinks.

This metamorphosis in technology occurred in parallel with an equally
dramatic change in the way algebraists think about their subject and the
way they conduct their research. On the one hand computers facilitate
mathematical discovery, and on the other hand they can be integral to
proving theorems. It is impossible to overemphasise the impact of com-
puter systems such as MAGMA [12] and GAP [54] on the professional
lives of algebraists internationally, both on their teaching and on their
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research. All of my research students use these computer systems as es-
sential learning tools to explore new concepts. They demand illustrative
examples to examine by computer to aid their understanding.

Answers to mathematical questions raised new questions which in
turn inspired new conceptual breakthroughs, Computers have become
an experimental tool for exploring new concepts and structures in alge-
bra, for spotting patterns, and for suggesting new conjectures and theo-
rems. Demand for higher performance and greater mathematical capa-
bilities for investigating larger and more complex mathematical struc-
tures was the impetus for new slgorithm development. This in turn
highlighted the importance of complexity analysis and statistical analy-
sis for understanding the performance of algorithms. Moreover the use
of computers in algebra, and the mathematics developed to support it,
have led to new areas of algebraic research which integrate and build on
diverse areas of mathematics. Computers have become an indispensable
tool at the forefront of cutting-edge research in algebra.

Because of my knowledge and experience the paper will focus on
group theoretic illustrations rather than examples from other areas of
algebra. Also, because I will concentrate on areas with which I have
had some personal inveolvement I will make very little mention of several
important lines of development related to computational group theory,
such as computation with finitely presented groups [10] and crystallo-
graphic groups [13], computation with characters and representations of
groups (23, 44], and computational complexity [1, 6, 37].

2. Computers as labour saving devices

My initial undergraduate education did not include any computer
courses. There were none available. My first introduction to computers
was a short course on the then new computer language Fortran IV at the
Australian National University in December 1968. I was spending my
summer at the Australian National University on a Vacation Scholarship
at the end of my third year of undergraduate study. I found the Fortran
language interesting, but the computer interface tedious and irritating.
The only mathematically significant applications suggested as exercises
during the course were two procedures to generate prime numbers. Qur
programs were presented to the computer in a stack of punched cards,
and we could have our cards run through the computer once each day.
I decided that an application which needed the use of computers would
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have to be very tmportant to me to warrant the tedium of daily de-
bugging of a stack of punched cards.

As a research student in Oxford in the early 1970’s I recognised the
value of computers as labour saving devices for performing tasks that I
could easily see how to do by hand but which could be done faster when
automated. Examples of this were procedures for finding all solutions for
certain divisibility conditions or linear inequalities over some restricted
range of parameter values. My D. Phil. supervisor Peter Neumann
had an ongoing ‘spare-time’ research program to classify the primitive
permutation groups of prime degree less than 100. One purpose of this
exercise was to test the power of the existing theory of permutation
groups, and another purpose no doubt was to sharpen the understanding
and expertise of his research students by involving them in some of the
cases. It was good fun working together with Peter on this programme.
I remember a group of us going to the University’s computer centre
to submit our program on punched cards. We would wait until our
allotted 10 seconds of CPU time was used up, and re-cycle the cards
for another run with the values of the parameters adjusted slightly. It
was an enjoyable social experience, but I did not regard it as serious
mathematical work.

3. Permutation groups and simple groups

The first time I experienced a sense of awe at what could be achieved
in algebra using computers was in 1973. I was attending a course of
lectures by Charles Sims in Oxford. The highlight of these lectures was
Sims’ description of his construction [56} of the Lyons-Sims sporadic
simple group of order

51,765,179,004,000,000 = 28 .37.56.7.11-31-37-67

as a group of permutations of a set of size 8,835,156. Work of Richard
Lyons [38] predicted that such a group might exist, but although a great
deal could be worked out theoretically about its structure, without an
explicit construction, neither its existence nor its uniqueness could be
proved.

Richard Lyons’ investigation was part of the programme to classify
finite simple groups according to the structure of their involution cen-
tralisers. An involution f is an element of order 2, that is, ¢t # 1 and
t? = 1. According to a pivotal result of Feit and Thompson [21] all finite
groups of odd order are soluble, and hence each finite non-abelian simple
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group G contains at least one involution t. The centraliser Cg(t) is the
collection of all the elements ¢ € G such that gt = tg. An important
family of possibilities to be studied were those where C(t) is a perfect
extension of a group of order 2 by an alternating group A,. The cases
where n # 11 had been dealt with in work of Brauer and Suzuki, Janko
and Thompson, Janko and Wong, and Lyons himself (see [38] for an
account of this) showing that of these cases only n = 8 gave rise to an
involution centraliser in a simple group, namely in McLaughlin’s simple
group (see [30]). Lyons used character theory and group representation
theory in the remaining case n = 11 to calculate the order of G and its
character table. He was also able to determine two permutation rep-
resentations of G, of degrees 9,606,125 and 8,835,156, the respective
point stabilisers being a non-split extension of a group of order 3 by the
automorphism group of McLaughlin’s group, and the Dickson-Chevalley

group G4(5).

Sims used the latter permutation representation for his construction.
The mathematical ideas he used formed the basis for future computer
computations with permutation groups. A naive way to represent a
permutation 7 of the set {1,...,n} on a computer is as a sequence
(x1,...,Ty), where z; = m(i). With the computers available at the time
it was not possible even to store a single permutation of 8,835, 156 points
in this way, much less multiply two such permutations. To represent and
compute with such permutations Sims used a base of G, that is a small
subset of the 8,835, 156 points such that two different permutations in
the group G produced different images of the base. In this way elements
of the group G could be represented on the computer by their ‘base
images’. Sims knew from the work of Lyons that G would have a small
base, thereby making his computations feasible and efficient. '

This striking success led Sims to develop further and disseminate
his method, now known as the Schreier/Sims algorithm, for finding
and using a base and corresponding strong generating set for computa-
tions with permutation groups. At the first international conference on
‘Computational problems in abstract algebra’, held in Oxford in 1967,
Sims [55, Section 4] spoke about his algorithm and made available an
implemented version of it. In 1973 he made available to attendees of his
lectures in Oxford a full-scale implementation. Another implementation
was made by Jeff Leon in 1975 and described in [35], and a complexity
analysis of this algorithm was given by Furst, Hopcroft and Luks [22] in
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1980, proving that it would run in polynomial time O(n®) for permuta-
tion groups of degree n. A good description can be found in the book
of Greg Butler [15, Chapters 13 and 14].

4. Computers and the Burnside Problem

According to Burnside {14] in 1902, “a still undecided point in the
theory of discontinuous groups is whether the order of a group may be
not finite, while the order of every operation it contains is finite”. He
went on to state a special form of the question which is now known as
the Burnside Problem, and about which several hundred research papers
have been written, see [47]. The largest group generated by r elements
such that ¢" = 1 for every element g is now called the Burnside group
of exponent n with r generators and is denoted B(r, n).

The Burnside Problem: Which of the groups B(r,n) are finite?

Hall [24, Chapter 18] reported on the state of knowledge at the time of
writing his book: B(r,n) was known to be finite for n = 2,3, 4,6 and all
7, but the exact order of B(r, 4) was not known for » > 3. Over a number
of years upper bounds for the order |B(3,4)| of B(3,4) were derived by
hand. The lowest of these 25° obtained in 1973 by Narain Gupta and
Mike Newman, was proved by Bayes, Kautsky and Wamsley [11], using
a computer, to be equal to |B(3,4)|.

I.D. Macdonald [39] was the first to use a computer to get informa-
tion about the orders of Burnside groups. He developed appropriate
descriptions of groups of prime power order to compute with them effi-
ciently. The origins of these descriptions, now called power-commutator
presentations, go back to work of Sylow in the 19th century. It was
Wamsley’s improvements to Macdonald’s procedures that enabled the
determination of |B(3,4)|. Havas and Newman then took up the chal-
lenge of determining |B(4,4)]. Making the significant theoretical and
implementational improvements needed to achieve this took a couple of
years. As a young postdoctoral research fellow at the Australian Na-
tional University I listened to weekly working sessions as this theory
was being developed in 1973-74. It led to the determination in 1975
that |B(4,4)| = 2%?2 and eventually to the proof (see {59]) in 1988 that
|B(5,4)] = 227?8. From the spectacular success of these methods new
group theoretic and algorithmic questions and challenges emerged.

Havas and Newman [25] developed a suite of programs for comput-
ing with power-commutator presentations of groups which is known now
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as the ANU p-quotient program. A theory for computing with graded
Lie rings was developed with Vaughan-Lee [26, 59] which led to theo-
retical bounds on the nilpotency class of the largest finite r-generator
groups of exponent 5. Laue, Neubiiser and Schoenwaelder [32] built
on Newman’s ideas for describing subgroups of a soluble group in their
development of the SOGOS system (soluble groups’ operating system)
for interactive computing with soluble groups, complete with its own
command language SOGOL (soluble groups’ operating language). New-
man’s ideas also contributed to the development by Holt and Plesken [27]
of algorithms for enumerating finite perfect groups. Yet another strand
was a program due to Newman [46] effectively solving the isomorphism
problem for groups of prime power order and leading to the systematic
enumeration [48, 49, 50| of finite p-groups.

5. Comprehensive computer systems

During the 1970’s those at the forefront of group computations, es-
pecially Joachim Neubiiser in Aachen and John Cannon in Sydney, saw
the potential benefits of making available to the mathematical commu-
nity some general purpose computer systems which included the most
up-to-date algorithms for computing with groups and which had a ‘user-
friendly interface’. These systems would be wriiten in a computer lan-
guage which would make sense to a professional group theorist. The first
general systems developed were the SOGOS systemn in Aachen mentioned
already for computing with soluble groups, the CAS system [44], also in
Aachen, for computing group characters, and the system CAYLEY de-
veloped by Cannon [16] which included in particular many procedures
for computing with permutation groups. They were followed in the
1980’s and 1990’s by the systems GAP [43, 54] developed by Neubiiser,
Schénert and others in Aachen and MaGMa [12] developed by Cannon
in Sydney.

These systems were developed because their authors had a vision of
how computers could enhance progress and understanding about groups,
and not because of an overwhelming demand by the mathematical com-
munity. However these systems were the most important agents for
cultural change in group theory in the twentieth century. For the first
time novice computer users had the chance to experiment with com-
puter calculations without the enormous time and energy investment
needed to attain strong programming skills. The systems made it easy
to make computations with moderate-sized groups, for example, in the
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mid-1980’s it was feasible using CAYLEY (see [16]) to compute the or-
der of a permutation group of degree 10,000. It was possible to develop
and implement an algorithm using the high level computer languages
in these systems designed especially for ease of use by group theorists.
Thus more mathematicians developed algorithms in order to solve their
mathematical problems, and contributed their algorithms for inclusion
in the systems.

The systems remain at the cutting-edge of new developments in alge-
bra because leading researchers permit their most up-to-date algorithms
to be included in them. In fact it is now a matter of pride to announce
that one’s algorithms are available in the systems GAP or MAGMA.

My interaction and knowledge of these developments began in a pe-
ripheral way. I remember meeting John Cannon in the 1970’s while I
was working at the Australian National University. He took copies of
my notes of Charles Sims’ Oxford lectures, and asked numerous ques-
tions about my work on elements of prime order in primitive permutation
groups. The questions continued sporadically for a number of years, and
I became aware that John was carefully monitoring theoretical results
in this area for their applicability to algorithm development.

In 1983 I was appointed as a full professor, and I felt strongly that
mathematics courses should make appropriate use of new technology.
I also had enough self-knowledge to understand that I would need to
develop a research interest in computational aspects of mathematics to
ensure sufficient energy was devoted to achieving this.

John Cannon genercusly gave two weeks of his time in 1986 to run
workshops in Perth on CAYLEY. He explained many of the algorithms
and gave us some insights into what procedures were time-costly and
which ones were fast. I responded to a challenge from John to find an
efficient algorithm for computing the kernel of a homomorphism between
two finite abelian groups. Thus commenced my first research involve-
ment in computational group theory. The end-point of this first foray
was a general study of computing with group homomorphisms in a joint
paper {34} in 1991 with Charles Leedham-Green and Leonard Soicher.
I felt a terrible novice entering this new research area, and am grateful
to John Cannon and Mike Newman as well as my co-authors for their
advice and help in levering me into the field.

John also discussed with me the occasionally erratic behaviour of a
randomised algorithm for recognising whether the group generated by a
given set of permutations was the full alternating or symmetric group.
The alternating and symumetric groups A, and S, have no short bases
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and so the deterministic methods of Sims for permutation group com-
putations did not work well for these groups G if n was large. Efficient
procedures existed for checking that such groups were transitive, and
even that they were primitive. The basic idea of the recognition algo-
rithm was to make several independent random selections of elements
from G. If G really was the full alternating or symmetric group, then
with high probability elements would be found which could not lie in
any proper primitive subgroup, typically elements of prime order with
few non-trivial cycles and lots of fixed points. Theory suggested that
the algorithm should work extremely well. However the practical tests,
as John showed me in several computer print-outs, indicated problems
with finding satisfactory practical methods for making approximately
random selections from a permutation group, given only a set of gen-
erators. The issue of random selection continues to be a crucial one
in practice as for an increasing number of problems there is no practi-
cal deterministic algorithm to solve them, only a randomised one which
depends on making random selections of elements from a group.

6. Matrix group algorithms

In 1988, at the suggestion I believe of John Cannon, I received an in-
vitation to the Computational Group Theory week at the Mathematics
Research Institute in Oberwolfach, Germany. It was exciting to meet
the principal researchers in the area internationally, and to hear the
latest reports on their research. However the single most important
event to influence the direction of my future research in computational
group theory was a discussion with Joachim Neubiiser after dinner one
evening. He bemoaned the fact that, whereas efficient algorithms existed
for performing most of the important computational tasks for groups of
permutations and finite soluble groups, this was not the case for ma-
trix groups over a finite field. This was a serious defect in the current
computer systems since finite groups were often represented as matrix
groups. There was available a procedure called the MEATAXE developed
by Parker [52] to find subspaces invariant under a given matrix group,
and if both the dimension and the field size were small enough, then
permutation group algorithms could be used to study matrix groups.
However in general it was not even possible, he said, to decide whether
the group generated by a given set of nonsingular n x n matrices over a
finite field IF contained the special linear group SL,(F) (the group of all
n x n determinant 1 matrices over F).
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Not knowing a great deal about computational group theory, I found
this surprising and, influenced by my discussions with John Cannon
about the randomised recognition algorithm for alternating and sym-
metric groups, I wondered whether a similar approach might be possible
to recognise matrix groups containing SL,(F). I explained the approach
to Peter Neumann who was also present when Neubiiser made his com-
ments. What was needed was some subset of matrices in GL(F) with
two important properties. First the subset needed to be sufficiently large
that there was a good likelihood that matrices from the subset would
be obtained after several random selections from any matrix group con-
taining SL,(F); and we would need an efficient procedure for deciding
whether a matrix belonged to the subset. Secondly it was desirable
that relatively few matrix groups, other than groups containing SLx(F),
would contain any matrices in the subset; and we would need efficient
procedures for recognising these exceptional maftrix groups. We rather
quickly identified candidate subsets. We proposed to use two subsets,
each large enough to have the first property, and we believed that very
few matrix groups contained matrices from both subsets.

It took more than a year to verify that two slightly modified classes
had all the required properties, and it took another year to write down
all the details [45). The algorithm was surprisingly simple in form and
was implemented successfully by Holt and Rees [28]. Justifying the cor-
rectness of the algorithm required some deep group theoretic arguments
relying on the finite simple group classification. Its simple form allowed
us to give a complete complexity analysis. The SL-recognition algo-
rithm, as it was called, may be regarded as a prototype for subsequent
matrix group algorithms, as it exhibits a wide range of features common
to later algorithms.

In particular, it was a ‘one-sided Monte Carlo algorithm’. This means
that a positive answer ‘ The group contains SL,(F)’ was guaranteed to be
correct, but if a group containing SL,,(F) was submitted to the algorithm
there would be a small chance that appropriate matrices would not be
found by the random selection and hence the algorithm would not report
that the group contained SL,(F). The design of the algorithm was such
that the probability of the latter occurring could be made as small as
desired by the user.

The comments above assume that it is possible to make indepen-
dent uniform random selections of elements from a group. However in
practice the information available about the group is just a set of gener-
ating matrices. Finding an optimal method for making approximately
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random, and approximately independent, selections from a group is a
matter of on-going research and debate. A general method for doing this
for an arbitrary finite group was given in a theorem of Babai [2], but in
the context of the SL-recognition algorithm (see [53, p. 190]) the cost of
doing this was O(n!?) field operations compared with an estimated cost
of O(n®) (or in a typical case O(n?)) field operations for the remainder
of the algorithm. An algorithm developed in [17] in response especially
to the requirements of computation with matrix groups works well in
practice and has been analysed asymptotically. This latter algorithm,
and more generally the question of random selection from groups has
been critiqued and investigated by computer scientists and statisticians
as well as algebraists [3, 8, 9, 18, 19, 20, 51].

A concerted research effort by a number of mathematicians world-
wide has resulted in a coherent collection of computer algorithms for
matrix group computations implemented both as a share package [33]
within GAP and also in MAGMA. However more breakthroughs are
needed before matrix group computation has similar capabilities to com-
putation with permutation groups.

7. Use of GAP and MAGMA for problem solving

The computer systems GAP and MAGMA are now used widely as
tools for exploring algebraic and combinatorial structures. The success
of these systems was in part due to the growing acceptance by alge-
braists of the new ‘algebraic’ computer languages in which they were
written. As their use became more wide-spread, many users expressed
the wish for equally easy access to other specific purpose programs, for
example programs developed for combinatorial, or number theoretic, or
character theoretic applications. The benefits for research were becom-
ing obvious. Various strategies were used to achieve this in both systems,
and I will give an example of a development in which I was involved as
a beneficiary.

A group theory system X which the user had learnt to use might
send a command to another computer program Y which in turn would
complete a computation and return the result to the user through the
system X. This might make available to the user the program Y with
which she was unfamiliar. She would only need to learn a few new
commands in the language of system X rather than become proficient
in using program Y.
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This idea was put into practice by Leonard Soicher in the early 1990’s
to facilitate computations with automorphism groups of graphs. He used
as system X the group theory system GAP and as programs Y his own
coset enumeration program and the graph isomorphism program nauty
of Brendan McKay [41]. His aim was to enable the user to construct
a graph admitting a given group of automorphisms, to use nauty to
compute its full automorphism group, and then to compute further with
the graph and automorphism group in the system GAP. The outcome
was Soicher’s share package GRAPE 58] for the GAP system.

During the development of GRAPE Leonard Scicher visited Perth.
At that time Alice Miller and I were struggling with a problem about
vertex-transitive graphs which were not Cayley graphs. The Cayley
graph for a group G relative to a self-inverse subset S of ' is the graph
with elements of GG as vertices, and edges the pairs {z,sz}, forz € G
and s € 9. Such a graph admits G acting by right multiplication as a
vertex-transitive subgroup of automorphisms, so all Cayley graphs are
vertex-transitive. However there exist vertex-transitive graphs which
are not Cayley graphs, the smallest being the Petersen graph on 10
vertices which has automorphism group Ss. Marusi¢ [40] had asked: for
which positive integers n does there exist a vertex-transitive graph on
n vertices, which is not a Cayley graph. The subset of such positive
integers n is closed under multiplication, and so attempts to answer this
question naturally focussed on integers with few prime divisors.

At the time of our investigation the simplest case for which the an-
swer was not known was the case where n = 2pg with p and g distinct
primes congruent to 3 modulo 4. If a minimal vertex-transitive subgroup
G of automorphisms was regular (that is, had trivial stabilisers) then the
graph would be a Cayley graph for G. Thus our strategy was to examine
all minimal transitive permutation groups of degree 2pq, and investigate
the vertex-transitive graphs admitting them to decide whether or not
their full automorphism groups contained a regular subgroup. This was
‘easier said than done’. Our analysis led to several explicit families
of minimal transitive permutation groups, but we had great difficulties
completing the task of examining the corresponding graphs. Leonard’s
prototype program GRAPE turned out to be the ideal tool for exploring
these groups and their graphs. Our detailed computer ‘interrogation’ of
small members of these families led in one instance to the insights nec-
essary to construct a new family of non-Cayley vertex-transitive graphs
and, for another family of minimal transitive groups, to a proof that all
graphs admitting groups from the family were Cayley graphs (see [42]).
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We were enormously grateful to Leonard for making his system avail-
able to us. Moreover our frequent discussions may have helped shape
the design of GRAPE.

8. And so we reach the 21st Century

Early triumphs involving computer computations with groups, such
as those discussed in Sections 3 and 4, focussed on getting answers to
computationally difficult mathematical problems. For these pioneering
researchers the challenge was:

‘Can I get an answer to this specific mathematical question?’

Their spectacular success generated new questions and new challenges.
With the development of general purpose computer systems an addi-
tional question was added.

‘Can this general class of questions be answered efficiently in practice?’

New capabilities were added to the systems GAP and MAGMA which ex-
tended their ranges to include parts of combinatories, number theory, or
representation theory. Other new systems [10, 29] introduced graphical
interfaces to help the user.

Researchers in theoretical computer science, studying problems such
as graph-isomorphism testing, realised that it was essential to under-
stand the computational complexity of group-theoretic problems, see [36].
For them the questions were different.

‘How much time does this algerithm require?’
‘What is the optimal algorithm to use for this computation?’

In particular, they wanted to know what group computations could be
completed in a time which is a polynomial function of the size of the
input. Their work was conducted independently of the developments
which led to the computer systems CAYLEY, MAGMA and GAP. Strik-
ing contributions were made to a theoretical understanding of the com-
plexity of algorithms contained in these systems and new polynomial
time algorithms were developed [6, 22, 31, 37]. Moreover some of the
new theoretical algorithms [5, 4, 7] suggested that practical gains in
performance might be achievable, for example, for computations on per-
mutation groups with a small base, or by integrating a Monte Carlo
algorithm as an option in implemented algorithimns.

Communication and cooperation between researchers interested prin-
cipally in complexity issues and those concerned mainly with practically
efficient computation were facilitated by international meetings during
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the 1990°s. Each side threw down its gauntlet with a challenge for the
other. The demand was that in any algorithm development, attention
should be given to all the questions above. Many responded positively.
For example, Seress implemented in GAP many of the fast algorithms for
small base permutation groups, and others of us learnt how to express
the complexity of our algorithms in the accepted language for complexity
analyses.

" There is now a general expectation that new practical algorithms
should be accompanied by an analysis of their complexity as well as a
proof of their correctness. There is also an expectation that new theoret-
ical algorithms should be accompanied by a critique of their practicality,
and where appropriate a plan for their implementation. Thus in an ideal
world all new algorithms will come with a proof of their correctness, a
complexity analysis, and if appropriate a full implementation. Moreover
their practical performance will be in line with that predicted by their
complexity analysis.

Will the 21st century bring this ideal world? What might be our
vision for the next century? I will end by sketching part of mine.

The 21st century will bring further integration in mathematics. Al-
ready we have seen the benefits of complexity analysis and statistical
theory in critiquing existing algorithms. Deep results from group theory
and representation theory have allowed algorithms to become simpler by
turning some of them into essentially expert oracles. Probability distri-
butions on groups have been exploited to design randomised algorithms.
Developing the next generation of group theoretic algorithms will bring
together many areas of mathematics.

I do not have any clear idea of what the group theoretic algorithms or
computer systems of the 21st century will be like. Perhaps in the next
century someone will succeed in building a quantum computer. If this
happens then algebraists will be ready to design and implement highly
parallel, non-deterministic algorithms which will revolutionise computer
algebra.

Already group theorists recognise that non-trivial use of a system
such ag GAP or MAGMA in their research means that they are exploiting
high level intellectual property developed by their colleagues. They ac-
knowledge such use by referencing these systems in their research pub-
lications. However we are still working towards a satisfactory way to
acknowledge and reward research for which the output is a widely-used
and acclaimed software package rather than a book or journal article.
Indeed the systems GAP and MAGMA on which so much current research
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in group theory depends have no long-term guarantee of continued fund-
ing. Their future is not secure. My vision for the 21st century is that
computer systems like these will be essential research tools for alge-
braists. Researchers will continue to donate freely the algorithms they
design and implement, and this together with financial support from
many national research councils will ensure that these systems always
contain the most powerful algorithms known and are affordable by all
researchers and students.

We have not yet found the best way to have a completely successful
use of computers in the teaching of algebra although there have been
many successful experiments. However our future students, who will
have grown up accustomed to the excitement of computer games, will
expect a similar ease of use and visual attractiveness from mathematical
software packages. Moreover, some of them will have the computing
skills and sophistication needed to develop a new generation of computer
algebra systems with user interfaces which will make experimenting and
exploring with groups as easy and as enjoyable as playing the computer
game ‘Quake’. We can but dream! The extraordinary developments of
the 20th century in the use of computers in algebra will be surpassed by
even greater achievements in the coming century.
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