• Title/Summary/Keyword: groundwater flow analysis

Search Result 384, Processing Time 0.034 seconds

Aquifer Parameter Identification and Estimation Error Analysis from Synthetic and Actual Hydraulic Head Data (지하수위 자료를 이용한 대수층의 수리상수 추정과 추정오차 분석)

  • 현윤정;이강근;성익환
    • The Journal of Engineering Geology
    • /
    • v.6 no.2
    • /
    • pp.83-93
    • /
    • 1996
  • A method is proposed to estimate aquifer parameters in a heterogeneous and anisotropic aquifer under steady-state groundwater flow conditions on the basis of maximum likelihood concept. Zonation method is adopted for parameterization, and estimation errors are analyzed by examining the estimation error covariance matrix in the eigenspace. This study demonstrates the ability of the proposed model to estimate parameters and helps to understand the characteristics of the inverse problem. This study also explores various features of the inverse methodology by applying it to a set of field data of the Taegu area. In the field example, transmissivities were estimated under three different zonation patterns. Recharge rates in the Taegu area were also estimated using MODINV which is an inverse model compatible with MODFLOW.The estimation results indicate that anisotropy of aquifer parameters should be considered for the crystalline rock aquifer which is the dominant aquifer system in Korea.

  • PDF

A Quantitative Analysis of Groundwater Flow into Underground Storage Caverns (지하저장공동의 지하수 유입량에 관한 정량적 분석)

  • Chung, Il-Moon;Lee, Jeongwoo;Cho, Woncheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1062-1066
    • /
    • 2004
  • 암반 내에 공동을 굴착하여 LPG 혹은 원유를 저장하는 경우 공동에서의 지하수 유입량은 공동상부의 수압과 공동내의 가스압과의 관계를 파악할 수 있는 정량적인 지표가 된다. 공동내의 유입량은 되도록 일정하게 유지되는 것이 굴착등의 시공단계와 공동 운영 및 유지관리면에서 유리하며, 유입량의 급증 혹은 급감이 일어나는 경우는 그 원인을 조기에 규명하여야 한다. 이를 위해서는 지하수위, 가스저장압, 수막공 주입압 등에 따른 공동주변의 유동장 해석, 공동내로의 지하수 유입량 해석을 실시해야 한다. 지하저장공동의 유입량 해석에 있어서는 공동의 정확한 형상을 반영하기 위해서 유한요소법이 보편적으로 사유되어 왔으나 한번 설정한 유한요소망으로부터 공동의 설계요소를 변경하는 작업은 수원하지 않아 설계전단계에서 공동 및 수막 시설의 다양한 배치에 따른 모의를 수행하는데는 다소 무리가 있다. 이러한 불편함은 경계부의 형상과 조건만으로 내부점에서의 미지변수 계산을 효과적으로 수행할 수 있는 경계요소법을 도입함으로써 극복할 수 있다. 따라서 본 연구에서는 지하공동으로 배수되는 유입량 산정을 위해 경계요소법을 근간으로 한 2차원 지하수 흐름모형을 구성하였고, 이를 지하저장공동이 위치한 A기지에 적용하여 상부경계조건인 지하수위의 변화, 수막공 주입압 등에 따른 공동내의 유입량과 공동저장압과의 관계를 정량적으로 분석하였다. 분석 결과를 지하저장공동의 운영 및 유지관리에 활용될 수 있도록 수식화하여 제시하였다.

  • PDF

Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers (밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축)

  • Choi, Jae-Ho;Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF

Calculation of Watershed Topographic Index with Geographic Information System (지리정보시스템을 이용한 유역에서의 지형지수 산정)

  • 김상현;한건연
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.199-208
    • /
    • 1996
  • The multiple flow direction algorithm to calculate the spatial variation of the saturation tendency, i.e. topographic index, is integrated into the Geogrphic Information System, GRASS. A procedure is suggested to consider the effect of a tile system on calculating the topographic index. A small agricultural subwatershed (3.4$\textrm{km}^2$) is used for this study. The impact of a tile system on the groundwater table can be effectively considered by the Laplace's equation to the DEM. The analysis shows that a tile system has a high degree of saturation compared to the case without tile drainage, and the predicted riparian area is well fitted to the actual watershed condition. A procedure is suggested to consider the effect of tile system on calculating the topographic index.

  • PDF

Analysis of Runoff Characteristics in the Geum River Basin using Watershed Management Model (유역관리모형을 이용한 금강유역 유출특성 해석)

  • Ryoo, Kyong-Sik;Hwang, Man-Ha;Maeng, Seung-Jin;Lee, Sang-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.527-534
    • /
    • 2007
  • To operate scientifical and integrated management of water resources, it needs to identify clearly the quantitative variation and moving pathway of water resources in a basin. Moreover, it needs to also estimate more precisely the amount of runoff generating from the precipitation. Thus, in this study, to carry out more reliable hydrologic analyses, the runoff characteristics according to detailed runoff components and water balance in a basin are analyzed. As a result of yearly water balance analyses, during the period of drought year, the loss is bigger than that of 6-year mean loss and the return flow of groundwater is the most dominant component of runoff. During the period of flood year, the loss is smaller about 4% than that of 6-year mean loss and the subsurface water is the most dominant component of runoff. The loss due to the interception and evapotranspiration for 6-year mean loss is about 53% of the total rainfall, the mean runoff ratio is about 27% and the baseflow is about 22%.

A methodological approach for slope stability analysis in Steady state infiltration (정상류 침투를 가정한 강우시 사면안정해석기법)

  • Song, Pyung-Hyun;You, Byung-Ok;Ahn, Kwang-Kuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.736-744
    • /
    • 2009
  • The abrupt failure of slope caused by a concentrated rainfall would be a disaster in this country. Specially, the soil slope may be collapsed by the rainfall seepage, however, there is not much information for the mechanism of slope failure during rainfall. As analyzing the stability of slope by rainfall, the conventional method is to put the ground-water level on the surface of slope. However, it may provide the over-reinforcement for the slope stability. Futhermore, although over-reinforcement for the slope was fulfilled, the possibility of potential slope failure still exists. In this study, the slope stability by the conventional design method and the causes of unstable slope during rainfall were investigated. To analyze the slope stability by rainfall, the computer program SEEP/W for the analysis of seepage was used. As changing the intensity and duration of rainfall in SEEP/W, the analysis were performed. After completion of analysis, the porewater pressure data from SEEP/W was applied to SLOPE/W. As a results of this analysis, it is not reasonable that the groundwater level is going up to the surface of slope during rainfall. Therefore, the conventional reinforcement for the slope stability is not obvious to satisfy the criterion safety factor during rainfall. The reasonable counterplan is to install drainage hole on the surface of slope in order to prevent erosion and debris flow.

  • PDF

A Toolbox Approach for the Environmental Site Assessment of a Chemical Plant in a Coastal Area (연안지역 화학공장부지의 부지환경평가를 위한 복합조사기법의 적응)

  • Choi, Seung-Jin;Woo, Nam-Chil
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.419-443
    • /
    • 2007
  • Recently, the branch-out of foreign companies into domestic markets through M&A and the opened followed by the Free Trade Agreement(FTA) with America have made the environmental site assessments of specific site more necessary. In this study, through case study of conducting actual environmental site assessment by use of a toolbox approach at a large scale of chemical plant with various contaminants located in a coastal area, the problems of guideline of domestic environmental assessment of soil were complemented. And an efficient and economical assessment was achieved. All six steps such as basic investigation, environmental site history survey, sampling and analysis, installation of monitoring wells and hydrogeological survey, and data interpretation were conducted in this study. All results of document survey, geological lineament analysis, field geology survey of surrounding area, geophysical prospecting of the site, hydraulic conductivity, measurement of groundwater flow rate and direction, sampling and analysis at each step were associated and estimated as an integrated tool box approach. As a consequence of this study, toolbox approaches were very useful techniques for contamination level and site characterization of subsurface media. The given conditions to conduct a basic survey for domestic soil environment assessment of site by use of existing documents, as well as interviews with the owner/manager/user of all adjacent properties and thorough review of all practically reviewable records pertaining to the property and surrounding properties within "Guideline for Soil Environment Assessment" radii are very poor. As a result, the application of toolbox approach in the environment site assessment of site is not only more efficient and economical, but also could be very useful assessment to integrate the soil and groundwater contamination.

Optimization of Analytical Conditions for the Quantification of Explosive Compounds in Soil using HPLC (HPLC에 의한 토양내 화약물질 정량분석조건 최적화)

  • Cho, Jung-Hyun;Bae, Bum-Han;Kim, Kye-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.51-60
    • /
    • 2009
  • A series of experiments was performed to develop an optimized analytical procedure for the analysis of explosives in soil by HPLC with soil samples collected at two live-fire military shooting ranges. The minimum amount of soil to be collected, Wmin, for the analysis of explosive compounds was 125g, based on the segregation and homogeneity constants that account for soil heterogeneity and non-homogeneous distribution of target explosive compounds. The optimization of extraction and HPLC analytical conditions were also studied based on analytes CV values. The most effective soil/ extractant ratio was estimated to be 10g-pretreated soil/20 mL acetonitrile as extractant. The optimized HPLC elution conditions for the separation of US EPA designated 14 explosive compounds, were column temperature 30${\circ}C$, eluents ratio of isopropanol: acetonitrile: water = 18 : 12: 70, and flow rate of 0.8 mUmin at 230 nm. However, UV wavelength 254 nm was better for the analysis of NB, 2,4-DNT, 2NT, 4NT, and 3NT.

Uncertainty Analysis of SWAT Model using Monte Carlo Technique and Ensemble Flow Simulations (몬테카를로 기법과 앙상블 유량모의 기법에 의한 SWAT 모형의 불확실성 분석)

  • Kim, Phil-Shik;Kim, Sun-Joo;Lee, Jae-Hyouk;Jee, Yong-Keun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.57-66
    • /
    • 2009
  • 수학적 모델은 수량과 수질의 예측을 위해 현장 조사의 대안으로 사용되어지며 이러한 모델의 사용과 실측에 불확실성이 존재하게 된다. 불확실성에 대한 많은 연구들이 진행되어 왔으나 시나리오에 의한 모델링 과정에서 발생하는 불확실성에 대한 연구는 미흡한 실정이다. 본 연구에서는 산림이 농경지와 목초지로의 변화에 따른 시나리오를 설계한 후 시나리오 적용에 따른 SWAT (Soil and Water Assessment Tool) 매개변수의 불확실성을 분석하고자 하였다. 몬테카를로 기법 (Monte Carlo simulation)을 이용하여 각 매개변수별 1,000개의 난수를 발생하였으며 앙상블 유량모의 기법을 이용하여 미국 Alabama주 카하바강 상류 (50,967ha)를 대상으로 각 난수별 100개의 유량을 통해 불확실성을 분석하였다. 분석 결과 산림지역이 농경지와 목초지로 변화 되었을 때 유출량이 증가하는 것으로 분석되었으며, 임야가 목초지 보다 농경지로 변화되었을 때 유출량은 더욱 증가하는 것으로 나타났다. 각 시나리오별 SWAT 매개변수의 불확실성은 AWC (Available water capacity), CN (Curve number), GWREVAP (groundwater re-evaporation coeffeicient), REVAPMN (minimum depth of water in shallow aquifer for re-evaporation to occur)순으로 크게 나타났으며, Ksat (Saturated hydraulic conductivity)와 ESCO(Soil evaporation compensation factor)는 유출량의 변화에 큰 영향을 미치지 못하는 것으로 분석되었다. 토지피복별 산림 면적이 클 경우 불확실성이 크게 나타나 산림이 목초지와 농경지로 변함에 따라 불확실성은 감소하는 것으로 나타났다.

The Change of Water Balance due to Urbanization in Gwangju River Basin (도시화에 수반되는 광주천 유역의 물수지 변화)

  • Yang, Hea-Kun;Kim, Jong-Il
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.1
    • /
    • pp.192-205
    • /
    • 2004
  • The purpose of this paper is to analyze the factors, which have influence upon changes of hydrological environment in time series, and evaluate water balance changes caused by urbanization. The results of the analysis and evaluation are as follow: At first, the river runoff at Gwangju River Basin keep base flow of river by storage capacity recharged in June to September and show peak in August and minimum flow in May. The groundwater recharge by urbanization accounted for 46.1% of rainfall at early-urban stage, and decreased to 36.5% and 29.9% in the 1960's and the 1990's respectively, and is likely to decrease to 27.8% in the 2010's. On the other hand, the overland flow was 9.6% of rainfall in the 1960's and 16.2% in the 1990's, and is likely to increase to 18.3% in the 2010's. When such a phenomenon is kept continuously, distorted water balance shall be worsened to create not only frequent occurrence of urban flood but also decreased base flow of Gwangju River to accelerate dry stream phenomenon. The time series study on urban redevelopment and environment maintenance describes distorted phenomenon to supply the information for nature-friendly land use, and examines relations between human activities and natural environment.

  • PDF