Optimization of Analytical Conditions for the Quantification of Explosive Compounds in Soil using HPLC

HPLC에 의한 토양내 화약물질 정량분석조건 최적화

  • Cho, Jung-Hyun (Department of Civil &Environmental Engineering, Kyungwon University) ;
  • Bae, Bum-Han (Department of Civil &Environmental Engineering, Kyungwon University) ;
  • Kim, Kye-Hoon (Department of Environmental Horticulture, University of Seoul)
  • 조정현 (경원대학교 토목환경공학과) ;
  • 배범한 (경원대학교 토목환경공학과) ;
  • 김계훈 (서울시립대학교 환경원예학과)
  • Published : 2009.02.28

Abstract

A series of experiments was performed to develop an optimized analytical procedure for the analysis of explosives in soil by HPLC with soil samples collected at two live-fire military shooting ranges. The minimum amount of soil to be collected, Wmin, for the analysis of explosive compounds was 125g, based on the segregation and homogeneity constants that account for soil heterogeneity and non-homogeneous distribution of target explosive compounds. The optimization of extraction and HPLC analytical conditions were also studied based on analytes CV values. The most effective soil/ extractant ratio was estimated to be 10g-pretreated soil/20 mL acetonitrile as extractant. The optimized HPLC elution conditions for the separation of US EPA designated 14 explosive compounds, were column temperature 30${\circ}C$, eluents ratio of isopropanol: acetonitrile: water = 18 : 12: 70, and flow rate of 0.8 mUmin at 230 nm. However, UV wavelength 254 nm was better for the analysis of NB, 2,4-DNT, 2NT, 4NT, and 3NT.

HPLC에 의한 토양내 화약물질의 분석 방법을 최적화하기 위해 현재 실사격 훈련이 진행 중인 군사격장 2곳에서 토양시료를 채취하여 분석 실험을 수행하였다. 토양과 오염물질의 불균일도를 감안하여 segregation constant 와 homogeneity constant를 기준으로 산정한 결과, 화약물질의 분석을 위한 토양시료채취 최소량은 125g 이었다. 그리고 시료 전처리 과정인 추출단계에서 필요한 적정시료량과 추출액의 비율을 CV값에 근거하여 산정한 결과 토양 10g/ACN 20 mL가 가장 효과적이었다. 미국 EPA에서 지정한 화약물질 14종을 모두 분리하기 위한 HPLC의 용리 조건은 RP C18캘럼을 이용하여 칼럼온더 30${\circ}C$일 때, 이동상 구성 및 유량은 isopropanol : acetonitrile : water의 비율 18 : 12 : 70, 유량 0.80mL/min인 경우가 최적이었다. 분석파장 결정을 위해 분석 파장 230nm와 254nm에서의 화약물질 14종에 대한 검출한계 (detection limit)값과 각 화약물질의 UV/VIS스펙트럼을 비교한 결과 254nm보다 230nm일때가 더 적절하였다. 하지만 NB, 2,4-DNT, 2NT, 4NT및 3NT는 분석파장이 UV254nm일때 더 적절하였다.

Keywords

References

  1. 한국수자원공사, 2002, 다략대 사격장내 토양오염 정밀조사를 통한 한탄강 수질예측 및 복원공법연구
  2. 한국수자원공사, 2005, 군남홍수조절지 건설사업 사격장 피탄지 토양오염 정밀조사 보고서
  3. Bouvrier, E.S.P. and Oehrle, S.A., 1995, Sample preparation perspectives: SPE method development and troubleshooting, LC . GC 13, 120-125
  4. Borch, T. and Gerlach, R., 2004, Use of reversed-phase high-performance liquid chromatographydiode array detection for complete separation of 2,4,6-trinitrotoluene metabolites and EPA Method 8330 explosives: Influence of temperature and an ion-pair reagent, J. of Chromatography A, 1022(1-2), 83-94 https://doi.org/10.1016/j.chroma.2003.09.067
  5. Cassada, D.A., Monson, S.J., Snow, D.D., and Spalding, R.F., 1999, Sensitive determination of RDX, nitroso-RDX metabolites, and other munitions in ground water by solid-phase extraction and isotope dilution liquid chromatography-atmospheric pressure chemical ionization mass spectrometry, J. of Chromatography A, 844, 87-95 https://doi.org/10.1016/S0021-9673(99)00310-6
  6. Crockett, A.B., Craig, H.D., Jenkins , T.F., and Sisk, W.E., 1997, Field sampling and selecting on-site analytical methods for explosives, EPA/540/R-97/501
  7. Hilmi, A., Long, J.H.T., and Nguyen, A.L., 1999, Determination of explosives in soil and ground water by liquid chromatography-amperometric detection, Journal of Chromatography A, 844, 97-110 https://doi.org/10.1016/S0021-9673(99)00392-1
  8. Jenkins, T.F., Grant, C.L., Brar, GS., Thome, P.G, Ranney, T.A., and Schumacher, P.W., 1996a, Assessment of sampling error associated with collection and analysis of soil samples at explosive contaminated sites, Special Report 96-15, US Army Corps of Engineering, Cold Regions Research and Engineering Laboratory
  9. Jenkins, T.F., Grant, C.L., Brar, G.S., Thorne, P.G, Schumacher, P.W., and Ranney, T.A., 1996b, Sample representativeness: the missing element in explosives site characterization, In: Proceedings of the American Defence Prepardness Association's 22nd Environmental Symposium and Exhibition, Orlando, Florida, p. 18-21
  10. Jenkins, T.F., Walsh, M.E., Schumacher, P.W., Miyares, P.H., Bauer, C.F., and Grant, C.L., 1989, Liquid chromatographic method for determination of extractable nitroaromatic and nitramine residues in soil, J. of the Association of Official Analytical Chemists, 72, 890-899
  11. US EPA, 1992, Preparation of soil sampling protocols: Sampling techniques and strategies, Office of Research and Development, EPA/6001R-921128
  12. US EPA, 1994, SW 846 method 8330: Nitroaromatics and nitramines by high performance liquid chromatography (HPLC)
  13. U.S. EPA, 1998a, Health Advisory for hexahydor-l,3,5-trinitro-1,3,5-triazine (RDX), Criteria and Standard Division, Office of Drinking Water, Washington, D.C
  14. U.S. EPA, 1998b, Health Advisory for 2,4,6-trinitrotoluene (TNT), Criteria and Standard Division, Office of Drinking Water, Washington, D.C
  15. US EPA, 2006, SW 846 method 8330b: Nitroaromatics, nitramines and nitrate esters by high performance liquid chromatography (HPLC)
  16. Walsh, M.E. and Jenkins, T.F., 1992, Indetification of TNT transformation products in soil, Technical Report CRREL-SR-92-16, Cold Regions Research and Engineering Laboratory, Hanover, NH, USA