• Title/Summary/Keyword: groundwater discharge

Search Result 240, Processing Time 0.02 seconds

Groundwater Balance in Urban Area (도시지역의 지하수수지)

  • Lee, Seung-Hyun;Bae, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1553-1560
    • /
    • 2011
  • The study analyzes groundwater balance with regard to the water recharge and discharge which contain urbanization components in Suyeong-gu, Busan. It also verifies the reliability and accuracy improvement on the analysis of the balance. The result of the study is viewed as preliminary data which are useful to develop, utilize and manage groundwater. The average quantity of groundwater recharge is 6,014.1 $m^3$/day in the research area during the last ten year period(from 1998 to 2007). The outflow from drainage areas to rivers and coasts is 149.3 $m^3$/day, the inflow from rivers and coasts to drainage area is 439.9 $m^3$/day. The use of the water is 4,243.0 $m^3$/day. The outflow caused by subway in line No.2 and No.3 through Suyeong-gu and the one by building an underground electric complex is 1,500.0 $m^3$/day. The leakage of water works is 6514.9 $m^3$/day. The inflow and outflow of sewerage is 5082.2 $m^3$/day from groundwater to sewer. The amount of groundwater recharge, the inflow from rivers and coasts to drainage area, and the leakage of water works belong to the amount of groundwater inflow and the total amount is 12,968.9 $m^3$/day. The amount of outflow from drainage area to rivers and coasts, the use of groundwater, outflow by subway and underground electric complex tunnel and the amount of inflow of the water to sewerage belong to the amount of outflow of groundwater and the sum amount is 13,031.5 $m^3$/day. The gap between the amount of inflow and outflow of groundwater is 62.6 $m^3$/day, which is considered to reflect the trend that the short term drop in the amount of rainfall results in the amount of groundwater recharge and that the amount of outflow from drainage area to rivers and coasts decreases.

Estimation of Groundwater Recharge by the Water Balance Analysis using DAWAST Model (일 유출모형의 물수지 분석에 의한 지하수 함양량 추정)

  • Lee, Duk-Joo;Lee, Ho-Chun;Lee, Soon-Kwang;Kim, Tai-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.431-434
    • /
    • 2003
  • This research developed a method for the estimation of groundwater recharge by yielding daily soil moisture content and watershed evapotranspiration from the water balance concept of the unsaturated and saturated layers in rainfall-runoff model called DAWAST. The goal of the research is to estimate the groundwater recharge fulfilling conditions of the safe discharge for any season. To meet this goal, the data of groundwater level and stream flow rate have been monitored in a study area and used to validate the model.

  • PDF

A Study on the Base Flow Recession Curve Development in the Ssangchi Basin of the Sumjin River (섬진강 쌍치유역의 기저유출 감수곡선식 개발에 관한 연구)

  • 김경수;조기태
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.66-72
    • /
    • 2000
  • The purpose of this study is establish a recession curve for low flow discharge in the Ssangchi basin. For this study, we selected 34 recession segments and calculated recession constants and initial discharges. The average initial discharge is 0.40 ㎥/sec and the recession constant is 0.86. With using the initial discharge and the recession constant, We got the non-linear recession cure equation. This non-linear equation is more reasonable fit than the linear equation of the recession curve for low flow.

  • PDF

하수처리장 방류수에 용존된 무기화학종의 연속계측자료를 이용한 하천유량, 유속 및 방류량 추적

  • Kim, Gang-Ju;Han, Chan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.3-6
    • /
    • 2001
  • Various Parameters such as stream velocities, discharges, and dispersion coefficients of dissolved solutes were estimated by fitting 1-D nonreactive solute transport model to the time-series chemistry data. This study was done for the reaches of Mankyung River lower than the Jeonju Wastewater Treatment Plant (Jeonju WTP). Korea. Concentrations of inorganic chemicals in the stream waters are strongly influenced by mixing with the chemically distinct effluent from Jeonju WTP. Sulfate, EC. and the total major cation were proved to be nearly conservative in the study area front their relationships with chloride, the conservative chemical species. The solute transport model was constrained to the time-series concentrations for these 4 conservative species. The variations of concentration and discharge of Jeonju WTP were used as input parameters, and the stream velocities, dispersion coefficients, and concentrations and discharges of some inflows were optimized. The differences between the observed arid simulated values for alkalinities and nitrates are inversely correlated and show diurnal fluctuations, indicating the photosynthesis. The parameters obtained front this mode] range from 550 to 774 kcmd (stream discharge at the outlet of the study area), from 0.06 to 0.10 m/sec (flow velocity), and from 0.7 to 6.4 m$^2$/sec (dispersion coefficient). The history of Jeonju WTP discharge was well predicted when optimized, indicating the validity of the model results.

  • PDF

Hydrochemical Characteristics and Changes by Rainfall in the Jungrang River (강우에 의한 중랑천의 수질 특성 변화 연구)

  • Kim, Youn-Tae;Kim, Yu Lee;Woo, Nam-Chil;Hyun, Seung Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.666-671
    • /
    • 2006
  • Effects of a rainfall event (July 28, 2005) on the hydrochemical characteristics of the Jungrang river, the biggest tributary of the Han river, was investigated. Significant spatial variations in the hydrochemical characteristics were observed. At JR2 location, concentrations of T-N and T-P were relatively low indicating occurrence of active oxidation in the stepped drop structure. At JR3 location, concentrations of Na, K, Cl, $NH_4-N$ and EC were elevated suggesting increased discharge from the nearby waste-water treatment plant and tributaries. The rain event diluted major dissolved ion concentrations in the river by 12~52%. The $NO_3-N$ levels were preserved during the rain then increased about twofold after rainfall, suggesting increased discharge of nitrate-contaminated groundwater. Heavy metals including Cd, Co, Cr, Cu and Pb were not detected in all water samples and the leachates from surface sediment samples. Concentrations of Fe, Mn, Al and Zn were below the Korean Drinking Water Guideline. Results of this study suggested that establishment of water-quality monitoring protocols describing temporal and spatial variations in parameters sensitive to rainfall events, relatively steady factors, and contaminant sources is required.

A Method of Estimating the Volume of Exploitable Groundwater Considering Minimum Desirable Streamflow (최소하천유출량을 고려한 지하수 개발가능량 산정방안)

  • Chung, Il-Moon;Lee, Jeongwoo
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.375-380
    • /
    • 2013
  • The concept of safe yield places an emphasis on balancing groundwater withdrawal with groundwater recharge but ignores naturally occurring groundwater discharge. Because streams and their alluvial aquifers are closely linked in terms of water supply and water quality, to be properly understood and managed they must be considered together. Therefore, some districts in Kansas have reevaluated their safe-yield policies to account for natural groundwater discharge and stream-aquifer interactions by amending their safe-yield regulations to include a portion of baseflow as the minimum desirable streamflow (MDS). This study proposes a modified safe-yield policy in which the drought flow is chosen as the MDS. Baseflow separation was conducted from streamflow hydrograph and the results are presented as a flow-duration curve. The exploitable groundwater can be determined by subtracting MDS from the cumulative baseflow. This method was tested in the Musimcheon watershed, which was validated for streamflow using the SWAT-K model. The annually averaged exploitable groundwater in the whole watershed was estimated to be 86 mm. The exploitable groundwater amounts were also estimated for each subwatershed in the Musimcheon watershed.

폐기물 매립지 토양에서의 PCBs 분석법

  • Lee Jeong-Hwa;Jeon Chi-Wan;Jeong Yeong-Uk
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.199-201
    • /
    • 2005
  • This paper describes a simple procedure for the quantitative analysis of 7 PCBs (polychlorinated biphenyls) in soils on the waste reclaimed land, The procedure involved sample clean up using silicagel column, acetonitrile partition and sulfuric acid procedures. The instrumental technique is applied GC/PDD(gas chromatography/pulsed discharge detector) and GC/ECD(gas chromatography/electron capture detector). Concentration of $sub-{\mu}g/g$ level was attainable with 20g soils on the waste reclaimed land.

  • PDF

Groundwater pollution risk mapping using modified DRASTIC model in parts of Hail region of Saudi Arabia

  • Ahmed, Izrar;Nazzal, Yousef;Zaidi, Faisal
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.84-91
    • /
    • 2018
  • The present study deals with the management of groundwater resources of an important agriculture track of north-western part of Saudi Arabia. Due to strategic importance of the area efforts have been made to estimate aquifer proneness to attenuate contamination. This includes determining hydrodynamic behavior of the groundwater system. The important parameters of any vulnerability model are geological formations in the region, depth to water levels, soil, rainfall, topography, vadose zone, the drainage network and hydraulic conductivity, land use, hydrochemical data, water discharge, etc. All these parameters have greater control and helps determining response of groundwater system to a possible contaminant threat. A widely used DRASTIC model helps integrate these data layers to estimate vulnerability indices using GIS environment. DRASTIC parameters were assigned appropriate ratings depending upon existing data range and a constant weight factor. Further, land-use pattern map of study area was integrated with vulnerability map to produce pollution risk map. A comparison of DRASTIC model was done with GOD and AVI vulnerability models. Model validation was done with $NO_3$, $SO_4$ and Cl concentrations. These maps help to assess the zones of potential risk of contamination to the groundwater resources.

The Assessment of Stabilization of Open-dumping Landfill Leachate - A Case Study of Noeun Landfill - (비위생매립지 침출수의 안정화 평가 - 노은매립지 사례연구 -)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.3
    • /
    • pp.115-124
    • /
    • 2004
  • To utilize a closed municipal solid waste landfill site in environmentally secure conditions, it is necessary to verify the stabilization level of landfill leachate. To assess leachate stabilization of an open-dumping municipal solid waste landfill (Noeun Landfill) which is located at the upper drainage basin of Namhan River which flows into Lake Paldang utilized for Seoul Metropolitan water supplies, the surrounding characteristics of the landfill site was surveyed. After then, leachate, groundwater and soil samples from this landfill were chemically analyzed, and the analysis results were evaluated by "The Criteria of Landfill Waste Stabilization(CLWS)", "Discharge Criteria of Landfill Leachate", "The Criteria of Domestic Use in Groundwater Quality", and "Soil Contamination Criteria" promulgated by Korean Ministry of Environment. The closed open-dumping landfill was equipped with the final soil cover, 3 groundwater monitoring wells and poor landfill gas extraction devices for the post-closure management of the landfill. BOD/CODcr ratios in leachate were less than or slightly higher than 1/10. This results seemed to imply that the leachate stabilization level of this landfill based on the CLWS was almost completed. Qualities of groundwater sampled from monitoring wells located at outside of landfill were adequate for "The Criteria of Domestic Use in Groundwater Quality". Finally, concentrations of soil contaminants that were likely to be influenced by this landfill site were adequate to "Soil Contamination Criteria".

Transient Groundwater Flow Modeling in Coastal Aquifer

  • Li Eun-Hee;Hyun Yun-Jung;Lee Kang-Kun;Park Byoung-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.293-297
    • /
    • 2006
  • Submarine groundwater discharge (SGD) and the interface between seawater and freshwater in an unconfined coastal aquifer was evaluated by numerical modeling. A two-dimensional vertical cross section of the aquifer was constructed. Coupled flow and salinity transport modeling were peformed by using a numerical code FEFLOW In this study, we investigated the changes in groundwater flow and salinity transport in coastal aquifer with hydraulic condition such as the magnitude of recharge flux, hydraulic conductivity. Especially, transient simulation considering tidal effect and seasonal change of recharge rate was simulated to compare the difference between quasi-steady state and transient state. Results show that SGD flux is in proportion to the recharge rate and hydraulic conductivity, and the interface between the seawater and the freshwater shows somewhat retreat toward the seaside as recharge flux increases. Considered tidal effect, SGD flux and flow directions are affected by continuous change of the sea level and the interface shows more dispersed pattern affected by velocity variation. The cases which represent variable daily recharge rate instead of annual average value also shows remarkably different result from the quasi-steady case, implying the importance of transient state simulation.

  • PDF