• 제목/요약/키워드: ground surface temperature

검색결과 422건 처리시간 0.029초

연삭가공시 온도해석을 통한 열변형 예측 (A Study on the Prediction of Thermal Deformation Using Temperature Analysis in Surface Grinding Process)

  • 김강석;곽재섭;송지복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.19-23
    • /
    • 1995
  • The thermal deformation of a workpiece during grinding is one of the most important factors that affect a flatness of a grinding surface. The heat generated in one-pass surface grinding causes the convex deformation of a workpiece. Therefore, the ground durfae represents a concave profile. In the analysis a simple model of the temperature distribution, based on the results of a finite element method, is applied. Theanalyzed results are compared with experimental results in surface grinding. The main results obtained are as follows: (1) The temperature distribution of a workpiece by FEM has a good agreement with the experimental results. (2) The bending moment by generated heat causes a convex deformation of the workpiece and it leads to a concave profile of the grinding surface.

  • PDF

ASTER에 의한 청주시주변의 지표면온도 추정 (Estimation of Surface Temperature of the Urban Area in Cheongju Using ASTER Data)

  • 박종화;나상일
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.563-568
    • /
    • 2005
  • Land surface temperature (LST) for large areas can only be derived from surface-leaving radiation measured by satellite sensors. These measurements represent the integrated effect of the surface and are superior to point measurements on the ground, e.g. in Urban Heat Island. ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) is an imaging instrument that is flying on the NASA's Terra satellite launched in December 1999. ASTER acquires 14 spectral bands and can be used to obtain detailed datas of land surface temperature, emissivity, reflectance and elevation. Spatial resolution of 90m of TIR channels of ASTER is useful when we analyze the spatial variations of surface heat fluxes in urban areas. The purpose of this study is to extract the LST using ASTER TIR channels.

  • PDF

지상물체의 표면온도 계산을 위한 파장별 태양복사 흡수특성 모델링 연구 (Study on Modeling the Spectral Solar Radiation Absorption Characteristics in Determining the surface Temperature of a Ground Object)

  • 최준혁;길태준;김태국
    • 한국항공우주학회지
    • /
    • 제35권1호
    • /
    • pp.33-39
    • /
    • 2007
  • 본 논문은 대기층을 통한 파장별 태양복사를 고려한 3차원 지상 물체의 표면 온도 분포를 예측하는 소프트웨어를 개발하는데 도움을 줄 것이다. 다양한 가스로 구성된 대기층을 통과하는 파장별 태양복사 에너지를 계산하기 위해서 LOWTRAN7을 이용하였으며, 여기서 얻어진 결과는 파장별 흡수 또는 총괄흡수 방식으로 에너지보존방정식에 반영하였다. 원통형 물체 위의 시간별 표면온도 분포를 나타내기 위해서 준 내재적 방법을 사용하여 계산하였으며 물체의 파장별 표면 복사 특성을 이용하기 위해서 태양복사를 흡수하거나 물체의 표면 방사가 이루어지는 모델을 사용하였다. 본 논문에서는 개발된 S/W의 성능 향상을 위하여 파장별 태양복사 분석 방법과 총괄태양복사 분석 방법을 각각 적용하여 본 결과 이들 두 방법 사이에는 약 3% 이내의 차이를 나타내었으나 두 방법 모두 실용적 관점에서 충분한 결과를 나타내었음을 알 수 있었다.

식품의 동결시간 예측을 위한 표면열전달계수 측정 (Measurement of the Surface Heat Transfer Coefficients for Freezing Time Prediction of Foodstuffs)

  • 정진웅;공재열;김민용
    • 한국식품과학회지
    • /
    • 제21권6호
    • /
    • pp.735-741
    • /
    • 1989
  • For the accurate prediction of freezing time, probably the most difficult factor to measure and major error source is the surface heat transfer coefficient. In this work, surface heat transfer coefficient were determined for still air freezing and immersion freezing methods by theory of the transient temperature method and confirmed by using a modification of plank's equation to predict the freezing time of ground lean beef. The results showed the cooling rate of immersion freezing was about 11 times faster than that of still air freezing method. A comparison of surface heat transfer coefficient of copper plate and ground lean beef resulted an difference of 25-30% because the food sample surface is not smooth as copper plate. Also, when h-values measured by ground lean beef were applicated to modified model, the accuracy of its results is very high as difference of about 8%.

  • PDF

도시의 수목이 기온의 조절에 미치는 영향 (Influences of Urban Trees on the Control of the Temperature)

  • 김수봉;김해동
    • 한국조경학회지
    • /
    • 제30권3호
    • /
    • pp.25-34
    • /
    • 2002
  • The purpose of this paper is to discuss the function of microclimate amelioration of urban trees regarding the environmental benefits of street trees in summer, focusing on the heat pollution-urban heat island, tropical climate day's phenomenon and air pollution. We measured the diurnal variation of air/ground temperatures and humidity within the vegetation canopy with the meteorological tower observation system. Summertime air temperatures within the vegetation canopy layer were 1-2$^{\circ}C$ cooler than in places with no vegetation. Due to lack of evaporation, the ground surface temperatures of footpaths were, at a midafternoon maximum, 8$^{\circ}C$ hotter than those under trees. This means that heat flows from a place with no vegetation to a vegetation canopy layer during the daytime. The heat is consumed as a evaporation latent heat. These results suggest that the extension of vegetation canopy bring about a more pleasant urban climate. Diurnal variation of air/ground temperatures and humidity within the vegetation canopy were measured with the meteorological tower observation system. According to the findings, summertime air temperatures under a vegetation canopy layer were 1-2$^{\circ}C$ cooler than places with no vegetation. Due mainly to lack of evaporation the ground surface temperature of footpaths were up to 8$^{\circ}C$ hotter than under trees during mid-afternoon. This means that heat flows from a place where there is no vegetation to another place where there is a vegetation canopy layer during the daytime. Through the energy redistribution analysis, we ascertain that the major part of solar radiation reaching the vegetation cover is consumed as a evaporation latent heat. This result suggests that the expansion of vegetation cover creates a more pleasant urban climate through the cooling effect in summer. Vegetation plays an important role because of its special properties with energy balance. Depended on their evapotranspiration, vegetation cover and water surfaces diminish the peaks of temperature during the day. The skill to make the best use of the vegetation effect in urban areas is a very important planning device to optimize urban climate. Numerical simulation study to examine the vegetation effects on urban climate will be published in our next research paper.

서울 도심지의 인본열에 의한 지표온도 분석: 위성영상 적용 사례 (Analysis of the Land Surface Temperature by the Anthropogenic Heat in the Urban Area of Seoul: An Example in Application of Satellite Images)

  • 방건준;박석순
    • 환경영향평가
    • /
    • 제19권4호
    • /
    • pp.397-407
    • /
    • 2010
  • The increase of the solar reradiation from urban areas relative to suburban due to urbanization heats up the air temperature in urban areas and this is called the urban heat island (UHI) effect. This UHI effect has a positive relationship with the degree of urbanization. Through the studies on UHI using the satellite imagery, the effect of the surface heat radiation was observed by verifying the relationship between the air temperature and the land cover types (surface materials such as urban, vegetation, etc.). In this study, however, the surface temperature distribution was studied in terms of land use types for Seoul. Using land use types, the surface temperature in urban areas such as residential, industrial, and commercial areas in Yeongdeungpo, highly packed with industrial and residential buildings, was maximum $6^{\circ}C$ higher than in the bare ground, which indicated that the surface temperature reflected the pattern of the human-consumed energy on the areas and showed that one of the important causes influencing the air temperature except the surface heat reradiation by the sun is the anthropogenic heat. Also, the effect due to the restoration of the Chunggae stream on UHI was investigated. The average surface temperature for the Chunggae stream was reduced about $0.4^{\circ}C$ after restoration. Considering that each satellite image pixel includes mixture of several materials such as concrete and asphalt, the average surface temperature might be much lower locally reducing UHI near the stream.

Fe-Cr-Al계 합금 빌렛의 상온 표면균열 원인에 관한 연구 (Study on the Origins of Surface Cracks at Room Temperature in Fe-Cr-Al Alloy Billets)

  • 김상원;박종혁;김인배
    • 한국재료학회지
    • /
    • 제14권1호
    • /
    • pp.19-27
    • /
    • 2004
  • Metallurgical and mechanical experiments were performed to explain unexpected surface cracks encountered in fabricating ground rolled-billet of Fe-Cr-Al alloys at room temperature. The toughness of these alloys containing between 220 and 236 ppm (C+N) has been assessed using notched-bar impact tests. According to our results, with a larger grain size, a higher interstitial content of (C+N) or a smaller size of precipitates, ductile to brittle temperature(DBTT) increased and absorbed energy decreased at room temperature. These results suggest that the surface cracks at room temperature stem from a poor resistance to brittle fracture, due to dislocation movement by the finely dispersed carbides within grains under the condition of higher (C+N) content.

하이브리드 지중열교환기 적용 히트펌프 시스템의 냉방 성능 분석 (Cooling Performance Analysis of Ground-Source Heat Pump (GSHP) System with Hybrid Ground Heat Exchanger (HGHE))

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.43-52
    • /
    • 2018
  • This paper presents the cooling performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a vertical GHE and a surface water heat exchanger (SWHE). In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the hybrid GHE, Mode 1~Mode 4. The measurement results show that the system with HGHE mainly operates in Mode 1 and Mode 2 over the entire measurement period. The average cooling coefficient of performance (COP) for heat pump unit was 5.18, while the system was 2.79. In steady state, the heat pump COP was slightly decreased with an increase of entering source temperature. In addition, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further research are needed to optimize the design data for various load ratios of the HGHE.

Landsat 8 OLI/TIRS Science Product를 활용한 지표면 온도 유용성 평가 (Availability of Land Surface Temperature Using Landsat 8 OLI/TIRS Science Products)

  • 박성욱;김민식
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.463-473
    • /
    • 2021
  • 본 연구에서는 최근 USGS에서 공개한 Landsat 8 Collection 2 Level 2 Science Product (L2SP) 위성 영상을 이용하여 국내 지표면 온도를 산출하였고, 기존 Landsat 8 Collection 1 Level 1 Terrain Precision (L1TP) 위성 영상을 활용하여 산출한 국내 지표면 온도와의 비교와 기상청 종관기상관측자료(Automated Synoptic Observing System, ASOS)와의 검증을 통해 L2SP 기반 지표면 온도 자료의 국내 영역에 대한 적합성을 평가하고자 하였다. L2SP는 연구 및 분석에 용이하도록 Landsat 8 Collection 2 Level 1 데이터를 기반으로 만든 Level 2 자료로, 기존의 계산식을 통해 산출해야 하는 지표면 반사도 자료와 지표면 온도 자료를 계산 처리 없이 바로 사용할 수 있다는 장점이 있다. 2018년부터 2020년까지 3년간의 Landsat 8 지표면 온도 산출물과 관측소 지점 8개소 주변 3×3 격자 영역과의 비교한 결과, 8개 관측소 기준 L2SP 지표면 온도와 L1TP 지표면 온도의 평균 피어슨 상관계수(Pearson correlation coefficient)는 각각 0.971, 0.964로 두 자료 모두 상당히 강한 양의 상관관계를 보여주었으며, RMSE (Root Mean Square Error)의 경우 각각 4.029℃, 5.247℃로 L2SP 지표면 온도 자료가 더 낮은 RMSE를 보여주는 것을 확인 하였다. 이는 관측소 위치별로 값에 차이가 생길 수 있지만 평균적인 지표 결과를 보았을 때, L2SP 지표면 온도 자료가 L1TP를 통해 산출되는 지표면 온도 자료와 비교했을 때 준수하거나 그 이상의 정확도를 보여주어 국내 지표면 온도 산출 연구에 적합하다고 판단된다. 따라서 향후 계절적 요인과 고도에 따른 온도 차이 등의 환경 및 지형적인 요인도 고려를 하거나, 본 연구 과정에서 발생한 Science Product의 고정적인 영상 품질 문제 등이 개선된다면 보다 더 안정적이고 정확도 높은 지표면 온도 참조 자료로써의 유용성이 클 것이라 판단된다.

단속에 따른 Greep Feed 연삭가공 특성 (Characteristics of creep grinding in slotted wheel)

  • 이상철;박정우;송지복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.905-909
    • /
    • 1997
  • A geometric error of machine parts is one of the most important factors that affect the accuracy of positioning, generating and measuring for precision machinery. It is known that the thermal deformation of a workpiece during surface grinding is the most important in the geometric error of ground surface. This paper experimentally describes the grinding characteristics of creep-feed grinding. The wheels have 6 slotted pieces in order to compare the grinding temperature with the geometric.

  • PDF