Abstract
Metallurgical and mechanical experiments were performed to explain unexpected surface cracks encountered in fabricating ground rolled-billet of Fe-Cr-Al alloys at room temperature. The toughness of these alloys containing between 220 and 236 ppm (C+N) has been assessed using notched-bar impact tests. According to our results, with a larger grain size, a higher interstitial content of (C+N) or a smaller size of precipitates, ductile to brittle temperature(DBTT) increased and absorbed energy decreased at room temperature. These results suggest that the surface cracks at room temperature stem from a poor resistance to brittle fracture, due to dislocation movement by the finely dispersed carbides within grains under the condition of higher (C+N) content.