• Title/Summary/Keyword: ground model test

Search Result 1,134, Processing Time 0.028 seconds

Experimental Behavior Characteristics of 2×2 Group Pile under Lateral Loads (수평하중을 받는 2×2 무리말뚝의 실험적 거동 특성)

  • Kwon, Oh-Kyun;Park, Jong-Un
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.5-16
    • /
    • 2018
  • In this study, the large scale laboratory model tests were executed to investigate the lateral resistance characteristics of $2{\times}2$ group pile under lateral loads according to the array method and installation angle of piles. The effect on the behavior of $2{\times}2$ group pile was also investigated through model tests varying the pile diameter and length, distance to pile top from the ground surface, center-to-center (CTC) length and surcharge etc. From these test results, it was found that the lateral resistance of $2{\times}2$ group pile of which piles were constructed slantly in both directions was greater than that of group pile of which piles were constructed vertically. And as a result of parameter tests on the lateral resistance of $2{\times}2$ group pile, it was found that the most important parameter was the pile length. As the embedment depth ratio (L/D) increased to 36.5 from 26.5, the lateral resistance increased 3~4 times or more. But the center-to-center (CTC) length, distance to pile top from the ground surface and surcharge did not affect much on the lateral resistance of group pile.

A Study on Reliability Improvement of RALT for KUH through Fault Analysis (한국형기동헬기 레이더고도계의 결함분석을 통한 신뢰성 향상에 관한 연구)

  • Jun, Byung Kyu;Kim, Young Mok;Chang, Joong Jin;Kim, Chang Young;Hwang, Gil Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.406-414
    • /
    • 2014
  • In this paper, it is introduced characteristics of FMCW-type Radar Altimeter for KUH, and its defects occurred during ground/flight test in initial product phase. In addition, it is also described 'data/control flow model' based fault analysis results of S/W and processes of verifying improvement design through flight test as well as aircraft system integration test called MEP SIL. As a result of design improvement and verification, it is validated that settling the defects and improving not only safety but also capability of the KUH.

A Study on the Calculation of Lateral Flow Pressure of Polluted Soils with Various Water Contents (함수량이 다른 오염지반의 측방유동압 산정에 관한 연구)

  • 안종필;박경호
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.75-88
    • /
    • 2002
  • When unsymmetrical surcharge is worked on polluted soft soils, large plastic shearing deformation such as settlements, lateral displacement, upheavals and shearing failure occured in the soils and they have often done considerable damages to the soils and structures. Accordingly, this study conducts laboratory pilots test to investigate the determination method of lateral flow pressure of polluted soft soils by comparing it to existing equations. The model test is performed that a model stock device is made and polluted soils are filled in a container which fires the soils. Then the displacement is observed as surcharge load is increased by regular intervals at untrained condition. The result shows that test the lateral flow pressure is adequately calculated by the equation (P=K$_{0}$YH) and the maximum value of lateral flow pressure Is found near 0.3H of layer thickness(H) and is higher to ground surface than synthesis pattern, Poulos distribution pattern and soft clay soils(CL, CH) which is not polluted.

Joint Inversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (II) - Verification and Application of Joint Inversion Analysis - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(II) - 동시역산해석기법의 검증 및 적용 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.155-165
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. Numerical analysis, theoretical model test, and field test were performed to verify the joint inversion analysis. Results from 2D, 3D finite element analysis were compared with those from the transfer matrix method in the numerical analysis. On the other hand, the difference of results from each inversion analysis was investigated in the theoretical model analysis. Finally, practical applicability of the joint inversion analysis was verified by performing field test. As a result, it is confirmed that considering dispersion information of each wave simultaneously prevents excessive divergence and improves accuracy.

Characteristics of Shear Behavior According to State of Particle Bonding and Crushing (입자 결합 및 파쇄 형태에 따른 전단거동 특성)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Dong-Seok;Lee, Seok-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.314-323
    • /
    • 2010
  • Recently, granular soils having a large particle size are frequently used as a filling material in the construction of foundation, harbor, dam, and so on. The shear behavior of this granular soil plays a key role in the stability of structures. For example, soil particle crushing occurring at the interface between structure and soil and/or within soil mass can cause the disturbance of ground characteristics and consequently induce an issues in respect of stability of structures. In order to investigate the shear behavior according to an existence and nonexistence of particle crushing, numerical analyses were conducted by using the DEM(Discrete Element Method)-based software program PFC(Particle Flow Code). Using the crushing model and non-crushing model which were created in this study, numerical analyses of ring shear test were conducted and their results were analyzed and compared. In general, landslide and slope stability are accompanied by a large displacement and consequently not only a peak strength but also a residual strength are very important in the analysis of landslide and slope stability. However the direct shear test which has been commonly used in the determination of shear strength parameters has a limitation on displacement therefore the residual strength parameters can not be obtained. The characteristics of residual shear behavior were investigated through the numerical analyses in this study.

  • PDF

The Study for Horizontal Resistance Beyond Yield Condition on Single Pile Using Nonlinear Analysis (비선형 해석 기법을 이용한 항복점 이후의 단일말뚝 수평저항력에 관한 연구)

  • Ryu, Jeong Ho;Cho, Sam Deok;Kim, Dae Hak;Lee, Kwang Wu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.6
    • /
    • pp.39-44
    • /
    • 2017
  • The behavior of the lateral resistance beyond the yield condition on single pile has been evaluated by comparative analysis. Pushover analysis of single pile has been performed to compare to the results on lateral load test of the pile foundation. The study for the behavior beyond the yield condition on single pile had been performed on the results on the lateral load test and pushover analysis considering mechanical conditions of the ground soil and the pile foundation.

Development of Real-Time Flutter Analysis Program (실시간 플러터 해석 프로그램 개발)

  • Lee, Ju-Yeon;Bae, Jae-Sung;Hwang, Jai-Hyuk;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • Wind tunnel test which is one of the method to predict the aeroelastic characteristics has difficulties to make scale-down structural model and achieve a specified free stream velocity. It is very costly and complicated to consider similarity relationships between real structure and scale-down structural model. "Dry Wind-Tunnel(DWT)" was proposed to overcome these difficulties. This is made up of Ground Vibration Test hardware and software to compute the aerodynamic forces. In the present study, program for computing the real-time unsteady aerodynamic forces which is an important part of DWT system was developed by Matlab Simulink and dSPACE. In addition, using this program and software which is a part of the test structure, a real-time flutter analysis was conducted and the results are verified by ZAERO.

Development of a New Pressure-Sinkage Model for Rover Wheel-Lunar Soil Interaction based on Dimensional Analysis and Bevameter Tests

  • Lim, Yujin;Le, Viet Dinh;Bahati, Pierre Anthyme
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.237-250
    • /
    • 2021
  • A rover is a planetary surface exploration device designed to move across the ground on a planet or a planetary-like body. Exploration rovers are increasingly becoming a vital part of the search for scientific evidence and discoveries on a planetary satellite of the Sun, such as the Moon or Mars. Reliable behavior and predictable locomotion of a rover is important. Understanding soil behavior and its interaction with rover wheels-the terramechanics-is of great importance in rover exploration performance. Up to now, many researchers have adopted Bekker's semiempirical model to predict rover wheelsoil interaction, which is based on the assumption that soil is deformable when a pressure is applied to it. Despite this basic assumption of the model, the pressure-sinkage relation is not fully understood, and it continues to present challenges for rover designers. This article presents a new pressure-sinkage model based on dimensional analysis (DA) and results of bevameter tests. DA was applied to the test results in order to propose a new pressure-sinkage model by reducing physical quantitative parameters. As part of the work, a new bevameter was designed and built so that it could be successfully used to obtain a proper pressure-sinkage relation of Korean Lunar Soil Simulant (KLS-1). The new pressure-sinkage model was constructed by using three different sizes of flat plate diameters of the bevameter. The newly proposed model was compared successfully with other models for validation purposes.

Land Use and Land Cover Mapping from Kompsat-5 X-band Co-polarized Data Using Conditional Generative Adversarial Network

  • Jang, Jae-Cheol;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.111-126
    • /
    • 2022
  • Land use and land cover (LULC) mapping is an important factor in geospatial analysis. Although highly precise ground-based LULC monitoring is possible, it is time consuming and costly. Conversely, because the synthetic aperture radar (SAR) sensor is an all-weather sensor with high resolution, it could replace field-based LULC monitoring systems with low cost and less time requirement. Thus, LULC is one of the major areas in SAR applications. We developed a LULC model using only KOMPSAT-5 single co-polarized data and digital elevation model (DEM) data. Twelve HH-polarized images and 18 VV-polarized images were collected, and two HH-polarized images and four VV-polarized images were selected for the model testing. To train the LULC model, we applied the conditional generative adversarial network (cGAN) method. We used U-Net combined with the residual unit (ResUNet) model to generate the cGAN method. When analyzing the training history at 1732 epochs, the ResUNet model showed a maximum overall accuracy (OA) of 93.89 and a Kappa coefficient of 0.91. The model exhibited high performance in the test datasets with an OA greater than 90. The model accurately distinguished water body areas and showed lower accuracy in wetlands than in the other LULC types. The effect of the DEM on the accuracy of LULC was analyzed. When assessing the accuracy with respect to the incidence angle, owing to the radar shadow caused by the side-looking system of the SAR sensor, the OA tended to decrease as the incidence angle increased. This study is the first to use only KOMPSAT-5 single co-polarized data and deep learning methods to demonstrate the possibility of high-performance LULC monitoring. This study contributes to Earth surface monitoring and the development of deep learning approaches using the KOMPSAT-5 data.

Analysis of Characteristics of Connected-pile Foundations for Transmission Tower according to Changes of Load and Connection Beam Conditions in Clay (점토지반에서 하중특성 및 연결보조건에 따른 송전철탑용 연결형 말뚝기초의 특성 분석)

  • Kyung, Doohyun;Lee, Junhwan;Paik, Kyuho;Kim, Youngjun;Kim, Daehong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.5-18
    • /
    • 2013
  • The differential settlement between the foundations causes the critical damage on the transmission tower constructed in soft ground. Connected-pile foundation for transmission tower structures is an option to prevent the differential settlement. It consists of main foundations and connection beams that are placed between the individual foundations at each corner of tower. In this study, 24 model pile load tests were conducted at a construction site in jeonlabuk-do to investigate the effects of the connection beams on transmission tower foundation. In model tests, various load conditions and connection beam conditions were considered. As the test results, the displacements of connected-pile foundation differed in accordance with load directions. The settlements of connected-pile foundation decreased with the increased stiffness of connection beams, lateral load capacity decreased in accordance with load height, and the lateral load capacity on the failure criteria was similar regardless of load direction.