• Title/Summary/Keyword: ground model test

Search Result 1,134, Processing Time 0.033 seconds

Resistivity Tomography in an Inclined Borehole to Surface Purvey Using a Pole-dipole Array (단극-쌍극자 배열을 이용한 경사시추공-지표 탐사에서 전기비저항 토모그래피)

  • Park Jong-Oh;Kim Hee-Joon;Park Chung-Hwa
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.255-263
    • /
    • 2006
  • In an electrical tomographic survey using an inclined borehole with a pole-dipole array, we must consider several factors: a singular point associated with zero potential difference, a spatial discrepancy between electrode and nodal point in a model due to a inclined borehole, and a variation of geometric factors in connection with a irregular topography. Singular points which are represented by the normal distance from current source to the ground surface can be represented by serveral regions due to a irregular topography of ground surface. The method of element division can be applied to the region in which the borehole is curved, inclined or the distance between the electrodes is shorter than that of nodal points, because the coordinate of each electrode cannot be assigned directly to the nodal point if several electrodes are in an element. Test on a three-dimensional (3-D) synthetic model produces good images of conductive target and shoves stable convergence.

A Study on the Utilization of Coal Ash as Earthwork Materials (석탄회의 토공재로서의 활용에 관한 연구)

  • 천병식;임해식
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-86
    • /
    • 1996
  • In this study, the possibility of the utilization of coal ash as earthwork materials is investigated. For this purpose, some laboratory experiments were carried out. The samples used in these tests are fly ash(FA), bottom ash(BA), coal ash dropped into ash pond(FA:BA=8:2), and mixed coal ash(FA:BA=5:5), which were discharged as a by-product at Yong-Yeul thermoelectric power plant, and general road filling materials. And for the deformation analysis of coal ash reclamation ground, several hyperbolic model parameters were determined by triaxial compression test. As a result of this study, coal ash has excellent engineering properties such as strength parameters comparing with general soils of the same grain size, especially in case of being used as backfill materials and reclamation materials on soft ground, and coal ash is superior to general earthwork materials in engineering properties becasuse of self hardening behaveiour, light weight property, etc.

  • PDF

A Study on Strength Reduction Factor of Pile-soil Interface for Evaluation of Pile Pullout Resistance by Soil Condition (지반조건에 따른 말뚝의 인발저항 평가를 위한 말뚝-지반 경계면 강도감소계수 고찰)

  • You, Seung-Kyong;Shin, Heesoo;Lee, Kwang-Wu;Park, Jeong-Jun;Choi, Choong-Lak;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.45-54
    • /
    • 2019
  • This paper describes the results of finite element analysis (FEA), in order to investigate a characteristics of pile pullout behavior according to the conditions of the relative density and fines content in original ground. In the FEA, a boundary elements and strength reduction factors ($R_{inter}$) on pile-soil interface were applied to simulate appropriately the shear behavior at the pile-soil interface, and then the reliability of numerical analysis method was verified by comparison of FEA results and previous experimental research(You et al., 2018). In addition, a the deformation characteristics at the pile-soil interface and determination method of $R_{inter}$ value was laid out. The results showed that the FEA, based on the analytical model applied in this study simulates appropriately the characteristics of the pile-soil interface by pullout model test of pile. In order to apply the suggested $R_{inter}$ value, it is necessary to consider the condition of the relative density and the fines content in ground.

Numerical study on the resonance behavior of submerged floating tunnels with elastic joint

  • Park, Joohyun;Kang, Seok-Jun;Hwang, Hyun-Joong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.207-218
    • /
    • 2022
  • In submerged floating tunnels (SFTs), a next-generation maritime transportation infrastructure, the tunnel module floats in water due to buoyancy. For the effective and economical use of SFTs, connection with the ground is inevitable, but the stability of the shore connection is weak due to stress concentration caused by the displacement difference between the subsea bored tunnel and the SFT. The use of an elastic joint has been proposed as a solution to solve the stability problem, but it changes the dynamic characteristics of the SFT, such as natural frequency and mode shape. In this study, the finite element method (FEM) was used to simulate the elastic joints in shore connections, assuming that the ground is a hard rock without displacement. In addition, a small-scale model test was performed for FEM model validation. A parametric study was conducted on the resonance behavior such as the natural frequency change and velocity, stress, and reaction force distribution change of the SFT system by varying the joint stiffness under loading conditions of various frequencies and directions. The results indicated that the natural frequency of the SFT system increased as the stiffness of the elastic joint increased, and the risk of resonance was the highest in the low-frequency environment. Moreover, stress concentration was observed in both the SFT and the shore connection when resonance occurred in the vertical mode. The results of this study are expected to be utilized in the process of quantitative research such as designing elastic joints to prevent resonance in the future.

Investigation of aerodynamic behaviour of a high-speed train on different railway infrastructure scenarios under crosswind

  • Jiqiang, Niu;Yingchao, Zhang;Zhengwei, Chen;Rui, Li;Huadong, Yao
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.405-418
    • /
    • 2022
  • The aerodynamic behaviour of a CRH high-speed train under three infrastructure scenarios (flat ground, embankment, and viaduct) in the presence of a crosswind was simulated using a 1/8th scaled train model with three cars and the IDDES framework. The time-averaged and instantaneous flow field around the model were examined. The employed numerical algorithm was verified through a wind tunnel test, and the grid and timestep resolution analyses were conducted to ensure the reliability of the data. It was noted that the flow around the rail line was different under different infrastructure scenarios, especially in the case of the embankment, which degraded the aerodynamic performance of the train under the crosswind. The flow around the train on the flat ground and viaduct was different, although the aerodynamic performance of the train was similar in both cases. Moreover, the viaduct accidents were noted to have the most critical consequences, thereby requiring the most attention. The aerodynamic performance of the train on the windward track of the embankment under the crosswind was worse than that of the train on the leeward track. But for the other two infrastructure scenarios, the aerodynamic performance of the train on the windward track is relatively dangerous, which is mainly caused by the head car. These observations suggest that the aerodynamic behaviour of the train on an embankment under a crosswind must be carefully considered and that certain wind protection measures must be adopted around rail lines in windy areas.

A Study on Frost Occurrence Estimation Model in Main Production Areas of Vegetables (채소 주산지에 대한 서리발생예측 연구)

  • Kim, Yongseok;Hur, Jina;Shim, Kyo-Moon;Kang, Kee-Kyung
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.606-612
    • /
    • 2019
  • In this study, to estimate the occurrence of frost that has a negative effect on th growth of crops, we constructed to the statistical model. We factored such various meteorological elements as the minimum temperature, temperature at 18:00, temperature at 21:00, temperature at 24:00, average wind speed, wind speed at 18:00, wind speed at 21:00, amount of cloud, amount of precipitation within 5 days, amount of precipitation within 3 days, relative humidity, dew point temperature, minimum grass temperature and ground temperature. Among the diverse variables, the several weather factors were selected for frost occurrence estimation model using statistical methods: T-test, Variable importance plot of Random Forest, Multicollinearity test, Akaike Informaiton Criteria, and Wilk's Lambda values. As a result, the selected meteorological factors were the amount of cloud, temperature at 24:00, dew point temperature, wind speed at 21:00. The accuracy of the frost occurrence estimation model using Random Forest was 70.6%. When it applied to the main production areas of vegetables, a estimation accuracy of the model was 65.2 and 78.6%.

Analysis of Bearing Capacity Characteristics on Granular Compaction Pile - focusing on the Model Test Results (조립토 다짐말뚝의 지지력 특성 분석 - 모형토조실험 결과를 중심으로)

  • Kang, Yun;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2004
  • Granular compaction piles have the load bearing capacity of the soft ground increase and have the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and have the liquefaction caused by earthquake prevent using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. The Granular compaction piles are constructed by grouping it with a raft system. The confining pressure at the center of bulging failure depth is a major variable in relation to estimate for the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and varies the magnitude of the confining pressure. In this study, method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge and loaded area. Also, the ultimate bearing capacity of the granular compaction piles is evaluated on the basis of previous study on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests. And using the result from laboratory model tests, it is studied increase effect of the bearing capacity on the granular compaction piles and variance of coefficient of consolidation for the ground.

  • PDF

Development of Subsurface Spatial Information Model with Cluster Analysis and Ontology Model (온톨로지와 군집분석을 이용한 지하공간 정보모델 개발)

  • Lee, Sang-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.170-180
    • /
    • 2010
  • With development of the earth's subsurface space, the need for a reliable subsurface spatial model such as a cross-section, boring log is increasing. However, the ground mass was essentially uncertain. To generate model was uncertain because of the shortage of data and the absence of geotechnical interpretation standard(non-statistical uncertainty) as well as field environment variables(statistical uncertainty). Therefore, the current interpretation of the data and the generation of the model were accomplished by a highly trained experts. In this study, a geotechnical ontology model was developed using the current expert experience and knowledge, and the information content was calculated in the ontology hierarchy. After the relative distance between the information contents in the ontology model was combined with the distance between cluster centers, a cluster analysis that considered the geotechnical semantics was performed. In a comparative test of the proposed method, k-means method, and expert's interpretation, the proposed method is most similar to expert's interpretation, and can be 3D-GIS visualization through easily handling massive data. We expect that the proposed method is able to generate the more reasonable subsurface spatial information model without geotechnical experts' help.

Use of large-scale shake table tests to assess the seismic response of a tunnel embedded in compacted sand

  • Zhou, Hao;Qin, Xiaoyang;Wang, Xinghua;Liang, Yan
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.655-665
    • /
    • 2018
  • Shield tunnels are widely used throughout the world. However, their seismic performance has not been well studied. This paper focuses on the seismic response of a large scale model tunnel in compacted sand. A 9.3 m long, 3.7 m wide and 2.5 m high rigid box was filled with sand so as to simulate the sandy soil surrounding the tunnel. The setup was excited on a large-scale shake table. The model tunnel used was a 1:8 scaled model with a cross-sectional diameter of 900 mm. The effective shock absorbing layer (SAL) on the seismic response of the model tunnel was also investigated. The thickness of the tunnel lining is 60 mm. The earthquake motion recorded from the Kobe earthquake waves was used. The ground motions were scaled to have the same peak accelerations. A total of three peak accelerations were considered (i.e., 0.1 g, 0.2 g and 0.4 g). During the tests, the strain, acceleration and soil pressure on the surface of the tunnel were measured. In order to investigate the effect of shock absorbing layer on the dynamic response of the sand- tunnel system, two tunnel models were set up, one with and one without the shock absorbing layer of foam board were used. The results shows the longitudinal direction acceleration of the model tunnel with a shock absorbing layer were lower than those of model tunnel without the shock absorbing layer, Which indicates that the shock absorbing layer has a beneficial effect on the acceleration reduction. In addition, the shock absorbing layer has influence on the hoop strain and earth pressure of the model tunnel, this the effect of shock absorbing layer to the model tunnel will be discussed in the paper.

Characteristics of Settlement for Non-woven Geotextile through Cyclic Loading Model Test (원형토조 시험을 통한 반복하중에 따른 부직포의 침하특성)

  • Choi, Chan-Yong;Lee, Jin-Wook;Kim, Hyun-Ki
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.47-54
    • /
    • 2009
  • The ballast track, the most common type of conventional railroad track in Korea, is deteriorated by abrasion of ballast, it's penetration into roadbed, and rugged surface of roadbed caused by cyclic loading of train. Persistent occurrence of those phenomena lead to insufficient drain capacity, one of major factors in track design, and it increases pore water pressure and decreases of shear strength under rainfall condition leading to unstable roadbed. In this study, cylindrical model tests are executed for 3 types of geotextile applying cyclic loading in order to observe the characteristics of displacement and bearing capacity of geotextile, and undrained condition has been applied for 0 day, 3 days and 7 days to each geotextiles. The results showed that there was about 1% difference at the final displacement rates between reinforced soils and nature soils and the displacement of the ground surface increases along with the degrees of the saturation. And in case that water contents exceeds the threshold, it is also apparent that weight and tensile strength of geotextile influences displacement of the ground surface. And the larger weight of geotextile is, the smaller plastic displacement. It is evaluated that non-woven fabric comes into effect on reducing the bearing capacity but, the weight of geotextile has little influence on it.

  • PDF