DOI QR코드

DOI QR Code

Development of Subsurface Spatial Information Model with Cluster Analysis and Ontology Model

온톨로지와 군집분석을 이용한 지하공간 정보모델 개발

  • Lee, Sang-Hoon (Ubiquitous Land Implementation Division, Korea Institute of Construction Technology)
  • 이상훈 (한국건설기술연구원 U-국토연구실)
  • Received : 2010.11.03
  • Accepted : 2010.12.06
  • Published : 2010.12.30

Abstract

With development of the earth's subsurface space, the need for a reliable subsurface spatial model such as a cross-section, boring log is increasing. However, the ground mass was essentially uncertain. To generate model was uncertain because of the shortage of data and the absence of geotechnical interpretation standard(non-statistical uncertainty) as well as field environment variables(statistical uncertainty). Therefore, the current interpretation of the data and the generation of the model were accomplished by a highly trained experts. In this study, a geotechnical ontology model was developed using the current expert experience and knowledge, and the information content was calculated in the ontology hierarchy. After the relative distance between the information contents in the ontology model was combined with the distance between cluster centers, a cluster analysis that considered the geotechnical semantics was performed. In a comparative test of the proposed method, k-means method, and expert's interpretation, the proposed method is most similar to expert's interpretation, and can be 3D-GIS visualization through easily handling massive data. We expect that the proposed method is able to generate the more reasonable subsurface spatial information model without geotechnical experts' help.

지하공간 개발의 증가에 따라 지층단면도 등 다양한 형태로 제공되는 지하공간 정보모델의 신뢰성이 요구되고 있다. 그러나 지반은 근본적으로 불확실하며, 이를 표현하는 정보모델도 자료부족, 해석표준 부재 등의 비통계적 요인과 외부환경 변수라는 통계적 요인으로 불확실성을 가진다. 따라서, 현재의 모델 생성은 고도로 훈련된 전문가에 의해 이뤄지고 있다. 본 연구는 지반공학 전문가의 경험과 지식에서 시맨틱을 추출하고, 이를 온톨로지 모델과 정보량으로 정량화하였다. 정량화한 온톨로지 모델은 군집분석의 클러스터간 거리계산에 적용하여 시맨틱을 고려한 군집분석 방법론을 제안하였다. 본 제안 방법을 실험지역에 적용한 결과 기존 K-Means 방법에 비해 전문가의 해석과 유사한 결과를 도출하였으며, 수작업으로는 어려운 대용량 데이터를 손쉽게 처리하고 3차원 GIS로 가시화가 가능하였다. 본 연구를 통해 지반공학 전문가의 도움 없이도, 그 경험을 고려하면서 대량의 지반정보 데이터를 효과적으로 처리하여 신뢰성 있는 지하공간 정보모델을 생성할 수 있을 것이다.

Keywords

References

  1. 박인식 역. Roy E. Hunt. 1995. 지반조사핸드북(Geotechnical Engineering Investigation Manual). 엔지니어스. 76-77쪽.
  2. 이상훈. 2008. 클러스터링과 지구통계학 기법을 이용한 지하공간정보 모델 생성시스템 개발. 한국지리정보학회지 11(4):64-75.
  3. 이상훈, 장병욱. 2009. 시멘틱 공유를 위한 MDA기반 지하공간정보 온톨로지 모델 개발. 지형공간정보학회지 17(1):121-129.
  4. 이상훈, 장용구. 2007. 지반정보 분석 및 평가를 위한 웹기반 지리공간정보 시스템 개발. 한국지리정보학회지 10(4):142-152.
  5. 지반정보DB포털 http://www.geoinfo.or.kr
  6. Balbi, D.J. and F. Saboy. 2004. CPTU‐soil profile interpretation based on similarity concept. Proc. 2nd International Site Characterization Conference. Porto, Portugal.
  7. Beyer, K., J. Goldstein, R. Ramakrishnan and U. Shaft. 1999. When is 'nearest neighbor' meaningful. Proc. of ICDT‐1999. Jerusalem, Israel. pp.217–235.
  8. Das, S.K. and P.K. Basudhar. 2004. Site charactorization of an alluvial site using artificial neural network. International Workshop on Risk Assessment in Site Characterization and Geotechnical Design, Banglore.
  9. Green, A.J., J.W. Marken, C.E. Alexander and C.S. Alexander. 2002. Karst unit mapping using geographic information system technology. Mower Country, Minnesota, USA, Environmental Geology 42(5):457-461. https://doi.org/10.1007/s00254-001-0505-8
  10. Gruber, T. 1992. A Translation Approach to Portable Ontology Specification. Knowledge Systems Laboratory, Stanford University, Stanford, CA, Technical Report KSL, 92pp.
  11. Hegazy, Y.A. and P.W. Mayne. 2002. Objective site characterization using clustering of piezocone data, Journal of Geotechnical and Geoenvironmental Engineering 128(12):986-996. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:12(986)
  12. Houlding, S.W. 1994. Uncertainty, Sampling Control and Risk Assessment. In: Houlding, S.W. (ed.), 3D Geoscience Modeling–Computer Techniques for Geological Characterization, Berlin: Springer‐Verlag, pp.185-200.
  13. Juang, C.H., T. Jiang and R.A. Christopher. 2001. Three dimensional site characterization: neural network approach. Geotechnique 51(9):799-809. https://doi.org/10.1680/geot.2001.51.9.799
  14. Lin, D. 1998. An information‐theoretic definition of similarity. Proc. of the 15th International Conference on Machine Learing.
  15. Macskassy, S.A., A.B. Banerjee, B.D. Davison and H. Hirsh. 1998. Human performance on clustering web pages: a preliminary study. Proc. of KDD‐1998, New York, NY, USA, pp.264–268.
  16. PEER(Pacific Earthquake Engineering Research). 2004. Archiving and Web Dissemination of Geotechnical Data : Development of a Pilot Geotechnical Virtual Data Center. Consortium of Organizations for Strong‐Motion Observation Systems.
  17. Resnik, P. 1995. Using information content to evaluate semantic similarity in a taxonomy. International Joint Conference for Artificial Intelligence 1995. pp.448-453.
  18. Shahin, M.A., M.B. Jaksa and H.R. Maier. 2001. Artificial neural netowkr applications in geotechnical engineering. Australian Geomechanics 36(1):49-62.
  19. Thuraisingham, B. 2000. Data Mining Technologies, Techniques, Tools, and Trends. John Wiley & Sons, Inc.
  20. Tou and Gonzalez. 1974. ISODATA (Iterative Self‐Organizing Data Analysis) Technique.
  21. Zhou, W. and N.H. Maerz. 2003. Implementation of multivariate clustering methods for characterizing discontinuities data from scanlines and oriented boreholes. Computers & Geosciences 28:827-839.