• Title/Summary/Keyword: grid connected PWM inverter

Search Result 76, Processing Time 0.021 seconds

A New On-Line Dead-Time Compensator for Single-Phase PV Inverter (단상 PV 인버터용 온라인 데드타임 보상기 연구)

  • Vu, Trung-Kien;Lee, Sang-Hoey;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.409-415
    • /
    • 2012
  • This paper presents a new software-based on-line dead-time compensation technique for a single-phase grid-connected photovoltaic (PV) inverter system. To prevent a short circuit in the inverter arms, a switching delay time must be inserted in the pulse width modulation (PWM) signals. This causes the dead-time effect, which degrades the system performance around zero-crossing point of the output current. To reduce the dead-time effect around the zero-crossing point of grid current, a harmonic mitigation of grid current is used as an additional part of the synchronous frame current control scheme. This additional task mitigates the harmonic components caused by the dead-time from the grid current. Simulation and experimental results are shown to verify the effectiveness of the proposed dead-time compensation method in the single-phase grid-connected inverter system.

Design of Triple Loop Current Control for Auxiliary Power Unit of Fuel Cell Train having Grid Connected Inverter Function (계통 연계 기능을 갖는 연료전지 철도차량 보조전원장치의 삼중 루프 전류 제어기 설계)

  • Kwon, Il-Seob;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yual
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.293-302
    • /
    • 2020
  • This study proposes a triple-loop current control method for the auxiliary power unit of fuel cell trains. The auxiliary power unit of fuel cell trains has a grid-connected function when power is supplied to the utility grid. Moreover, the auxiliary power unit of trains has a 1500 V DC link voltage; thus, PWM frequency cannot be increased to a high frequency. Owing to this low PWM frequency condition, creating a triple-loop design is difficult. In this study, a triple-loop controller is developed for a capacitor voltage controller in standalone mode that operates as an auxiliary power supply for trains and for a grid current controller in grid control mode with an inner capacitor voltage controller. The voltage controller employs an inductor current controller inner loop. To overcome low PWM frequency, a design method for the bandwidth of the capacitor voltage controller considering the bandwidth of the inner inductor current controller is described. The effectiveness of the proposed method is proven using PSIM simulation.

Highly Efficient MOSFET Inverter for Single-Phase Grid-Connected Photovoltaic Power Generation Systems (단상 계통연계형 태양광 발전 시스템용 고효율 MOSFET 인버터)

  • Ryu, Hyung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.227-232
    • /
    • 2014
  • A highly efficient MOSFET inverter for single-phase grid-connected photovoltaic power generation systems is presented in this paper. It is a full-MOSFET version of the conventional transformerless full-bridge inverter with dual L-C filters using unipolar PWM. The key idea lies on smart pre switching(SPS), which can make the large switching loss due to a poor reverse recovery of the MOSFET's body diode reduced dramatically. The validity of the proposed inverter is verified by experiment.

A Study on LLCL Filter to Reduce Harmonic Current of Grid Connected Power Inverter (계통연계형 인버터의 고조파 전류저감을 위한 LLCL 필터에 관한 연구)

  • An, Byoung-Woong;Hong, Chang-Pyo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2014
  • In this paper, the new LLCL filter is proposed for grid connected three-phase PWM inverter for passive damping. LLCL filter inserts a small inductor in the branch of the capacitor of the traditional LCL filter to compose a series resonant circuit to reduce the switching-frequency component on grid current. Using LLCL filter, the switching-frequency current ripple components can be attenuated much better than the LCL filter, leading to a decrease in the total inductance. However, the resonance phenomena caused by zero impedance from the addition of LC branch in LLCL filter can be a big problem. Resonance phenomena of LLCL filter can be a source of grid system instability, so proper damping methods are required. However, it is difficult to apply a passive damping method in the conventional LLCL filter, because the damping resistor increase impedance of the LC branch. Therefore, switching frequency component of grid current can not much attenuated by low Q of LC series resonance effect. In this paper, a new LLCL filter is proposed to overcome the conventional LLCL filter with passive damping. The validity of the proposed method is proven by simulation and experimental result.

Design of an LCL-Filter for Space Vector PWM in a Grid-Connected System (3상 계통 연계 인버터의 SVPWM을 위한 LCL-필터 설계)

  • Seo, Seung Gyu;Cho, Yongsoo;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.538-541
    • /
    • 2016
  • This paper proposes an LCL-filter design for space vector pulse width modulation (SVM) in grid-connected three-phase inverter systems. Although there are a several studies in progress, the existing methods are erroneous because they do not focus on the other switching methods. This paper presents the design methodology for an LCL-filter that is optimized for SVM switching operations. The design procedure for the LCL-filter is presented step-by-step. The inverter-side inductor was determined by an analysis of the ripple components, mathematically. Based on the reactive power absorption ratio, the filter capacitor was determined. The grid-side inductor was determined by the ripple attenuation factor of the output current. Experimental results verify the validity of the design method for the LCL-filter.

Modeling and Analysis of the Micro-Grid with SVPWM Micro-Sources (SVPWM 방식 마이크로소스로 구성된 마이크로그리드 모델링 및 해석)

  • Son, Kwang-Myung;Lee, Kye-Byung;Kim, Young-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.12-19
    • /
    • 2006
  • Micro-source units having power ratings in thousands of watts can provide power quality with higher reliability and efficiency than the conventional large scale units. This paper develops switching level model of micro-source and studies the characteristics of the micro-grid consisting of multiple micro-sources and interfaced with electric power system. The developed model adopts the space vector PWM to fully utilize the capacity of inverter. The interaction of the grid connected micro-sources and the characteristics of the control system parameters are investigated. Micro-sources and micro-grid are implemented using PSCAD/EMTDC. Simulation results show that the proposed model is efficient for studying micro-grid system.

Dead Time Compensation of Grid-connected Inverter Using Resonant Controller (공진 제어기를 이용한 계통 연계형 인버터의 데드타임 보상)

  • Han, Sang-Hyup;Park, Jong-Hyoung;Kim, Heung-Geun;Cha, Honn-Yong;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.569-576
    • /
    • 2011
  • This paper proposes a new dead time compensation method for a PWM inverter. Recently, PWM inverters are extensively used for industry applications, such as ac motor drives, distributed grid-connected systems and a static synchronous compensator (STATCOM). Nonlinear characteristics of the switch and the inverter dead time cause a current distortion and deterioration of power quality. The dominant harmonics in the output current are the $5^{th}$ and $7^{th}$ harmonics in the stationary frame, and the $6^{th}$ harmonics in the synchronous rotating frame. In this paper, a resonant controller which compensates the $6^{th}$ harmonics in the synchronous rotating frame is proposed. This method does not require any off-line experimental measurements, additional hardware and complicated mathematical computations. Furthermore, the proposed method is easy to implement and does not cause any stability problem.

A Study on 6-pulse-shift Current-source PWM Inverter for Photovoltaic System (태양광발전을 위한 6-pulse-shift 전류형 인버터에 관한 연구)

  • Lim, Joung-Min;Lee, Sang-Hun;Park, Sung-Jun;Moon, Chae-Joo;Chang, Young-Hak;Lee, Man-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.193-200
    • /
    • 2006
  • This paper suggests a 6-pulse-shift converter structure with PWM current-source inverter based on buck-boost configuration to improve the efficiency and to reduce the switching frequency of inverter for photovoltaic generation system, the device can be operated as interface system between solar module system and power system grid without energy storage cell. The circuit has six current-source buck-boost converter which operate chopper part and kas one full bridge inverter which make a decision the polarity of AC output. Therefore, the proposed PWM power inverter has advantages such as the reduction of witching loss and realization of unity power factor operation. The theoretical backgrounds are discussed and the input-output characteristics for the implemented prototype inverter using TMS320F2812 are verified experimentally in this paper.

LCL Filter Design for Grid-connected PCS Using Total Harmonic Distortion and Ripple Attenuation Factor (총고조파 왜율과 리플 감쇄율을 이용한 계통연계형 PCS용 LCL 필터 설계)

  • Park, Jong-Hyoung;Chi, Min-Hun;Kim, Heung-Geun;Chun, Tae-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.235-243
    • /
    • 2010
  • This paper describes a design method of LCL filter for grid-connected three-phase PWM inverter. First, by analyzing the ripple component of phase voltages and currents according to the PWM pattern of grid-connected three-phase inverter, the RMS value of the current ripple can be calculated. Then based on the analysis, the current THD in the inverter-side can be defined. After that by analyzing the dependency between the current THD of the system and the current ripple attenuation, the parameter of LCL filter can be designed. Finally, the described LCL filter design method is verified by showing a good agreement between the target current $THD_g$ and the actual one through the simulation and experiment.

Study of 60Hz Transformer-less High Frequency Linked Grid-Connected Power Conditioners for Photovoltaic Power System (60Hz 절연변압기가 없는 고주파링크방식 계통연계형 태양광발전시스템 고찰)

  • 유권종;정영석;최주엽
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.563-569
    • /
    • 2002
  • This paper proposes an inverter for the grid-connected photovoltaic system based on the transformer-less inverter. This system consists of a high frequency DC-DC converter, high frequency transformer, diode bridge rectifiers, a DC filter, a low frequency inverter, and an AC filter. The 20kHz switched high frequency converter is used to generate bipolar PWM pulse, and the high frequency transformer transforms its voltage twice, which is subsequently rectified by diode bridge rectifiers for a full-wave rectified 60 Hz sine wave power output. Even though the high frequency link system needs more power semiconductors, a reduced size, light weight, and saved parts cost make this system more comparative than other power conditioning systems due to elimination of 60Hz transformer.