• Title/Summary/Keyword: greenhouse production

Search Result 756, Processing Time 0.037 seconds

Prediction of Greenhouse Strawberry Production Using Machine Learning Algorithm (머신러닝 알고리즘을 이용한 온실 딸기 생산량 예측)

  • Kim, Na-eun;Han, Hee-sun;Arulmozhi, Elanchezhian;Moon, Byeong-eun;Choi, Yung-Woo;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Strawberry is a stand-out cultivating fruit in Korea. The optimum production of strawberry is highly dependent on growing environment. Smart farm technology, and automatic monitoring and control system maintain a favorable environment for strawberry growth in greenhouses, as well as play an important role to improve production. Moreover, physiological parameters of strawberry plant and it is surrounding environment may allow to give an idea on production of strawberry. Therefore, this study intends to build a machine learning model to predict strawberry's yield, cultivated in greenhouse. The environmental parameter like as temperature, humidity and CO2 and physiological parameters such as length of leaves, number of flowers and fruits and chlorophyll content of 'Seolhyang' (widely growing strawberry cultivar in Korea) were collected from three strawberry greenhouses located in Sacheon of Gyeongsangnam-do during the period of 2019-2020. A predictive model, Lasso regression was designed and validated through 5-fold cross-validation. The current study found that performance of the Lasso regression model is good to predict the number of flowers and fruits, when the MAPE value are 0.511 and 0.488, respectively during the model validation. Overall, the present study demonstrates that using AI based regression model may be convenient for farms and agricultural companies to predict yield of crops with fewer input attributes.

Comparing Net CO2 Uptake of Schlumbergera truncata 'Pink Dew' Phylloclades in a Growth Chamber and a Greenhouse (생육상과 온실에서 게발선인장 '핑크듀'의 엽상경별 CO2 흡수율 비교)

  • Seo Hee Jung;Ah Ram Cho;Yoon Jin Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.64-71
    • /
    • 2023
  • Crassulacean acid metabolism (CAM) plants use surplus CO2 generated by cooling and heating at night when ventilation is not needed in a greenhouse. Schlumbergera truncata 'Pink Dew' is a multi-flowering cactus that needs more phylloclades for high-quality production. This study examined photosynthetic characteristics by the phylloclade levels of S. truncata in a growth chamber and a greenhouse for use of night CO2 enrichment. The CO2 uptake rate of the S. truncata's top phylloclade in a growth chamber exhibited a C3 pattern, and the second phylloclade exhibited a C3-CAM pattern. The CO2 uptake rate of the top phylloclade in a greenhouse showed a negative value both day and night, but those of the second phylloclade exhibited a CAM pattern. The stomatal conductance and water-use efficiency (WUE) of S. truncata at both the top and second phylloclades were higher in a growth chamber than in a greenhouse. The WUE of S. truncata in a growth chamber and a greenhouse was higher at the second phylloclade, which is a CAM pattern compared with those of the top phylloclade. The daily total net CO2 uptake of S. truncata was higher in a growth chamber than in a greenhouse. The daily total net CO2 uptake of S. truncata at the second phylloclade had the highest value of 155 mmol·m-2·d-1 in a growth chamber. The night total CO2 uptake of S. truncate at the second phylloclade was 3-fold higher in a growth chamber than in a greenhouse. S. truncata's second phylloclade exhibited a CAM pattern that uptake CO2 at night, and the second phylloclade, was more mature than the top phylloclade. A multi-flowering cactus S. truncata 'Pink Dew' efficiently uptake night surplus CO2 in the proper environmental condition with matured phylloclade.

Measurement of Methane Production from Ruminants

  • Bhatta, Raghavendra;Enishi, Osamu;Kurihara, Mitsunori
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1305-1318
    • /
    • 2007
  • On a global scale agriculture and in particular enteric fermentation in ruminants is reported to produce about one fourth (21 to 25%) of the total anthropogenic emissions of methane ($CH_4$). Methane is produced during the anaerobic fermentation of hydrolyzed dietary carbohydrates in the rumen and represents an energy loss to the host besides contributing to emissions of greenhouse gases into the environment. However, there appears to be uncertainty in the $CH_4$ estimation from livestock due to the limited availability of data to document the variability at the farm level and also due to the significant impact of diet on the enteric $CH_4$ production. The methane mitigation strategies require robust prediction of emissions from rumen. There are many methods available which would be suitable for measuring $CH_4$ produced from the various stages of animal production. However, several factors need to be considered in order to select the most appropriate technique like the cost, level of accuracy required and the scale and design of the experiments to be undertaken. Selection of any technique depends on the accuracy as each one has its advantages and disadvantages. Screening of mitigation strategies may be evaluated using individual animal before large-scale trials on groups of animals are carried out. In this review various methods for the estimation of methane production from ruminants as well as for the determination of methane production potential of ruminant feeds are discussed. The advantages and disadvantages of the methods starting from respiration chamber, ventilated hood, facemask, sulphur hexafluoride ($SF_6$) tracer technique, prediction equations and meteorological methods to in vitro methods are detailed.

Analysis on Productivity and Efficiency of Greenhouse Rose Farming (시설장미 재배농가의 효율성 및 생산성분석)

  • Yun, Jin-Woo;Lee, Dong-Su;Kim, Seong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.532-542
    • /
    • 2020
  • Due to abnormal weather conditions such as high temperature, the management of greenhouse rose farms is getting worse. In order to enhance the competitiveness of these farms, new measures are needed to improve their management performance. Therefore, this study suggests alternatives to improve the efficiency and productivity by identifying the causes of inefficiency of greenhouse rose farms in terms of management performance analysis through DEA analysis and MPI analysis. As a result of DEA analysis, the average TE of farmers increased from 0.867('16) to 0.905('17), but decreased to 0.850 in 2018, indicating that it was inefficient. In order to increase the management efficiency of farmers, efforts to preferentially reduce the costs (equipment, employment labor, fertilizer, facilities, seeds) that cause inefficiencies are needed. As a result of MPI analysis, TECI decreased from 1.044(T2) to 0.939(T3), which was the cause of the MPI decrease, and the TCI was rather increased from 0.958(T2) to 0.969(T3). In other words, it means that the decrease in productivity is due to insufficient utilization of potential production technology rather than the slowing of technological progress. This implies that it is important to provide technical guidance on utilization after technology dissemination.

Synthesis and Emulsion Properties of Self-emulsifiable Polyethylene Waxes (자기유화 폴리에틸렌 왁스의 합성 및 에멀젼 특성 연구)

  • Yang, Jeongin;Lee, Sangjun;Shin, Jihoon;Han, Won Hee;Hong, Min Hyuk;Kim, Young-Wun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.670-678
    • /
    • 2017
  • Self-emulsifiable polyethylene (PE) wax was prepared using acrylic acid grafted PE wax with potassium hydroxide and various emulsifiers for the economic production of PE wax emulsion. Modification reaction completion was confirmed that the peak from carbonyl group of acrylic acid disappeared and the new peak from carboxylic acid salts appeared in the FT-IR (Fourier transform infrared) spectrum data. Self-emulsifiable properties of the modified PE wax were investigated by the emulsion size and the stability of wax emulsion without any additional emulsifiers. According to self-emulsifiable properties, the emulsion size and stability were varied on the concentration and structure of the emulsifier. The greater emulsion concentration and hydrophilic poly(ethylene oxide) (PEO) characteristics of the emulsifier resulted in the smaller emulsion size and better emulsion stability. In addition, the use of emulsifiers mixture was more effective to obtain smaller size and uniform distribution of emulsion than that of single emulsifier in PE wax modification reaction. Especially, modified PE wax with OAE-5 and LAE-15 emulsifiers mixture shows excellent performance in terms of the smallest emulsion size ($4.34{\mu}m$) and emulsion stability.

Effects of Minimizing the Heating Space on Energy Saving and Hot Pepper(Capsicum annuum L.) Growth in the Plastic Greenhouse (온실 난방공간 최소화가 에너지 절감 및 고추 생육에 미치는 영향)

  • Tae Young Kim;Young Hoe Woo;Ill Hwan Cho;Young Sam Kwon;Si Young Lee;Han Ik Jang
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.213-218
    • /
    • 2001
  • In 2000, domestic protected cultivation area was about 52,189 ha including 13,621 ha of heating greenhouses. Recently, heating cost accounts for 25 to 30% of total production cost which has been increased due to the rise of oil price, while the heating cost was about 15% in other advanced countries. To reduce the heating energy cost, the study of minimizing the heating space of greenhouse have been conducted from 1998 to 1999. The system was developed to control the heating space according to crop growth by moving horizontal curtain up and down. Installation of the heating space-control curtain in greenhouse decreased heating capacity to 264 m$^3$compared to 661.5 m$^3$in the traditional curtain, and consumpted fuel was saved about 56% point in semiforcing culture and 28% point in retarding culture of pepper. In addition, uniform distribution of air temperature and relative humidity in greenhouse environment resulted in earlier flowering and higher yields in hot pepper.

  • PDF

Temperature Control of Greenhouse Using Ventilation Window Adjustments by a Fuzzy Algorithm (퍼지제어에 의한 자연환기온실의 온도제어)

  • 정태상;민영봉;문경규
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.42-49
    • /
    • 2001
  • This study was carried out to develop a fuzzy control technique of ventilation window for controlling a temperature in a greenhouse. To reduce the fuzzy variables, the inside air temperature shop was taken as one of fuzzy variables, because the inside air temperature variation of a greenhouse by ventilation at the same window aperture is affected by difference between inside and outside air temperature, outside wind speed and the wind direction. Therefore, the antecedent variables for fuzzy algorithm were used the control error and its slop, which was same value as the inside air temperature slop during the control period, and the conclusion variable was used the window aperture opening rate. Through the basic and applicative control experiment with the control period of 3 minutes the optimum ranges of fuzzy variables were decided. The control error and its slop were taken as 3 and 1.5 times compared with target error in steady state, and the window opening rate were taken as 30% of full size of the window aperture. To evaluate the developed fuzzy algorithm in which the optimized 19 rules of fuzzy production were used, the performances of fuzzy control and PID control were compared. The temperature control errors by the fuzzy control and PID control were lower than 1.3$^{\circ}C$ and 2.2$^{\circ}C$ respectively. The accumulated operating size of the window, the number of operating and the number of inverse operating for the fuzzy control were 0.4 times, 0.5 times and 0.3 times of those compared with the PID control. Therefore, the fuzzy control can operating the window more smooth and reduce the operating energy by 1/2 times of PID control.

  • PDF

Development of Novel Materials for Reduction of Greenhouse Gases and Environmental Monitoring Through Interface Engineering

  • Hirano, Shin-Ichi;Gang, Seok-Jung L.;Nowotny, Janusz-Nowotny;Smart, Roger-St.C.Smart;Scrrell, Charles-C.Sorrell;Sugihara, Sunao;Taniguchi, Tomihiroi;Yamawaki, Michio;Yoo
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.635-653
    • /
    • 1999
  • The present work considers work considers research strategies to address global warming. Specifically, this work considers the development of technologies of importance for the reduction of greenhouse gas emission and, especially, the materials that are critical to these technologies. It is argued that novel materials that are essential for the production of environmentally friendly energy may be developed through a special kind of engineering: interface engineering, rather than through classical bulk chemistry. Progress on the interface engineering requires to increase the present state of understanding on the local properties of materials interfaces and interfaces processes. This, consequently, requires coordinated international efforts in order to establish a strong background in the science of materials interfaces. This paper considers the impact of interfaces, such as surfaces and grain boundaries, on the functional properties of materials. This work provides evidence that interfaces exhibit outstanding properties that are not displayed by the bulk phase. It is shown that the local interface chemistry and structure and entirely different than those of the bulk phase. In consequence the transport of both charge and matter along and across interfaces, that is so important for energy conversion, is different than that in the bulk. Despite that the thickness of interfaces is of an order to a nanometer, their impact on materials properties is substantial and, in many cases, controlling. This leads to the conclusion that the development of novel materials with desired properties for specific industrial applications will be possible through controlled interface chemistry. Specifically, this will concern materials of importance for energy conversion and environmental monitoring. Therefore, there is a need to increase the present state of understanding of the local properties of materials interfaces and the relationship between interfaces and the functional properties of materials. In order to accomplish this task coordinated international efforts of specialized research centres are required. These efforts are specifically urgent regarding the development of materials of importance for the reduction of greenhouse gases. Success of research in this area depends critically on financial support that can be provided for projects on materials of importance for a sustainable environment, and these must be considered priorities for all of the global economies. The authors of the present work represent an international research group economies. The authors of the present work represent an international research group that has entered into a collaboration on the development of the materials that are critical for the reduction of greenhouse gas emissions.

  • PDF

Cutting Propagation and Seedling Growth Effect According to Fertilizer Application of Elsholtzia minima Nakai (좀향유의 삽목 증식 및 시비에 따른 유묘의 생장 효과)

  • Kim, Tae-Keun;Kim, Hyoun-Chol;Song, Jin-Young;Lee, Hee-Seon;Ko, Seok-Hyung;Lee, You-mi;Song, Chang-Khil
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.243-252
    • /
    • 2015
  • This study was performed to establish a production system for in situ and ex situ conservation of Elsholtzia minima Nakai, an endemic plant grown in Jeju Island. Moreover, this study aimed to identify root-growth characteristics according to the use of pre-treatment agents and seedling growth effect according to fertilizer application. The mean temperature was similar in greenhouse and vinyl-moist chamber, but air humidity was higher in vinyl-moist chamber than in greenhouse. After stem planting of Elsholtzia minima Nakai, initial root growth was observed after 10 days in greenhouse and after 7 days in vinyl-moist chamber. Root growth rate was more rapid in vinyl-moist chamber. Moreover, survival rate, root growth rate and root number was slightly higher in vinyl-moist chamber than in greenhouse, indicating that vinyl-moist chamber is more effective in plant growth. When pre-treatment agents were used to remove root growth-inhibiting substances, a higher root growth rate of more than 95% was found in pre-treatment groups, excluding the group treated with AgNO3 at 77.5%. Thus, Elsholtzia minima Nakai is thought to have less root growth inhibitors. In the analysis of nitrogen application rate and Osmocote application by seedling container, a difference was found in survival rate and growth according to application rate and container conditions. When Osmocote, a slow release fertilizer, was applied to the soil surface around each culture container, survival rate and the growth of aerial and root parts were most favorable. Thus, Osmocote fertilizer is thought to be desirable for seedling propagation of Elsholtzia minima Nakai.

Effects of Granular Silicate on Watermelon (Citrullus lanatus var. lanatus) Growth, Yield, and Characteristics of Soil Under Greenhouse

  • Kim, Young-Sang;Kang, Hyo-Jung;Kim, Tae-Il;Jeong, Taek-Gu;Han, Jong-Woo;Kim, Ik-Jei;Nam, Sang-Young;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.456-463
    • /
    • 2015
  • The objective of this study was to determine the effects of granular type of silicate fertilizer on watermelon growth, yield, and characteristics of soil in the greenhouse. Four different levels of silicate fertilizer, 0(control), 600, 1,200, $1,800kg\;ha^{-1}$ were applied for experiment. The silicate fertilizer was applied as a basal fertilization before transplanting watermelon. Compost and basal fertilizers were applied based on the standard fertilizer recommendation rate with soil testing. All of the recommended $P_2O_5$ and 50% of N and $K_2O$ were applied as a basal fertilization. The N and $K_2O$ as additional fertilization was split-applied twice by fertigation method. Watermelon (Citrullus lanatus Thunb.) cultivar was 'Sam-Bok-KKuol and main stem was from rootstock (bottle gourd: Lagenaria leucantha Standl.) 'Bul-Ro-Jang-Sang'. The watermelon was transplanted on April, 15. Soil chemical properties, such as soil pH, EC, available phosphate and exchangeable K, Mg, and available $SiO_2$ levels increased compared to the control, while EC was similar and the concentrations of soil organic matter decreased. Physical properties of soils, such as soil bulk density and porosity were not different among treatments. The growth characteristics of watermelon, such as stem diameter, fresh and dry weight of watermelon at harvest were thicker and heavier for silicate treatment than the control, while number of node was shorter than the control. Merchantable watermelon increased by 3-5% compared to the control and sugar content was 0.4 to $0.7^{\circ}Brix$ higher than the control. These results suggest that silicate fertilizer application in the greenhouse can improve some chemical properties of soils and watermelon stem diameter and dry weight, which are contributed to watermelon quality and marketable watermelon production.