DOI QR코드

DOI QR Code

Synthesis and Emulsion Properties of Self-emulsifiable Polyethylene Waxes

자기유화 폴리에틸렌 왁스의 합성 및 에멀젼 특성 연구

  • Yang, Jeongin (Center for Greenhouse Gas Resources, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Sangjun (Center for Greenhouse Gas Resources, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Shin, Jihoon (Center for Greenhouse Gas Resources, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Han, Won Hee (Lion Chemtech Research Institute) ;
  • Hong, Min Hyuk (Lion Chemtech Research Institute) ;
  • Kim, Young-Wun (Center for Greenhouse Gas Resources, Korea Research Institute of Chemical Technology (KRICT))
  • 양정인 (한국화학연구원 탄소자원화연구소 온실가스자원화연구그룹) ;
  • 이상준 (한국화학연구원 탄소자원화연구소 온실가스자원화연구그룹) ;
  • 신지훈 (한국화학연구원 탄소자원화연구소 온실가스자원화연구그룹) ;
  • 한원희 ((주)라이온켐텍 연구소) ;
  • 홍민혁 ((주)라이온켐텍 연구소) ;
  • 김영운 (한국화학연구원 탄소자원화연구소 온실가스자원화연구그룹)
  • Received : 2017.08.23
  • Accepted : 2017.10.10
  • Published : 2017.12.10

Abstract

Self-emulsifiable polyethylene (PE) wax was prepared using acrylic acid grafted PE wax with potassium hydroxide and various emulsifiers for the economic production of PE wax emulsion. Modification reaction completion was confirmed that the peak from carbonyl group of acrylic acid disappeared and the new peak from carboxylic acid salts appeared in the FT-IR (Fourier transform infrared) spectrum data. Self-emulsifiable properties of the modified PE wax were investigated by the emulsion size and the stability of wax emulsion without any additional emulsifiers. According to self-emulsifiable properties, the emulsion size and stability were varied on the concentration and structure of the emulsifier. The greater emulsion concentration and hydrophilic poly(ethylene oxide) (PEO) characteristics of the emulsifier resulted in the smaller emulsion size and better emulsion stability. In addition, the use of emulsifiers mixture was more effective to obtain smaller size and uniform distribution of emulsion than that of single emulsifier in PE wax modification reaction. Especially, modified PE wax with OAE-5 and LAE-15 emulsifiers mixture shows excellent performance in terms of the smallest emulsion size ($4.34{\mu}m$) and emulsion stability.

열분해 폴리에틸렌 왁스 에멀젼을 경제적으로 제조하기 위하여 아크릴산 그라프트 폴리에틸렌 왁스를 KOH와 다양한 유화제로 비누화 반응을 행하여 자기유화 폴리에틸렌 왁스를 제조하였다. 자기유화 폴리에틸렌 왁스의 비누화 반응정도를 FT-IR 스펙트럼으로 분석한 결과, 아크릴산 그라프트 폴리에틸렌 왁스에 함유되어 있는 카르복실산 그룹에 기인한 카르보닐 피크가 사라지고 카르복실산 염 그룹에 기인한 카르보닐 피크가 새롭게 나타나는 것을 확인함으로써 자기유화 폴리에틸렌 왁스를 제조할 수 있었다. 자기유화특성은 자기유화 폴리에틸렌 왁스를 별도의 유화제를 사용하지 않고 에멀젼을 제조한 후 에멀젼 사이즈 및 에멀젼 안정성 결과로 평가하였다. 자기유화특성 평가결과, 에멀젼 사이즈 및 에멀젼 안정성은 유화제의 양과 유화제의 구조에 따라 차이를 나타내었다. 즉, 유화제의 양이 많고 친수성을 나타내는 에틸렌옥사이드 그룹이 많이 함유되어 있는 유화제일수록 에멀젼의 사이즈가 작게 나타났으며 에멀젼 안정성이 우수하였다. 또한, 아크릴산 그라프트 폴리에틸렌 왁스를 비누화 반응으로 개질할 때 2종의 유화제를 혼합하여 개질한 자기유화 폴리에틸렌 왁스의 에멀젼의 사이즈가 단일 유화제로 개질한 자기유화 폴리에틸렌 왁스의 에멀젼 사이즈 보다 작고 에멀젼 사이즈 분포도가 대체적으로 균일하게 나타났다. 특히, OAE-5와 LAE-15 유화제를 혼합하여 개질한 자기유화 폴리에틸렌 왁스 10 wt%를 함유한 에멀젼의 에멀젼 사이즈가 $4.34{\mu}m$로 가장 우수한 에멀젼 특성을 나타내었다.

Keywords

References

  1. B. Elvers, Ullmann's Encyclopedia of Industrial Chemistry 5th ed, 103, vol. A28, Wiley-VCH, Weinheim, Germany (1999).
  2. J. R. Carroll, R. M. Bradley, and A. I. Kalmikoff, Using waxes and polymers to improve coatings properties, Surf. Coat. Int., 77, 435-551 (1994).
  3. E. Richter and H. Kiesel, Use of polyolefin waxes as external lubricants andmold release agents in processing of plastics (Clariant GmbH, Germany) PCT WO 2001072855 (2001).
  4. D. M. Schmalzl and H. D. Nowicki, Use of polar-modified polyolefin waxesto improve adhesion of sealants to powder coatings, (Clariant GmbH,Germany) US Patent, US 2006111492 (2006).
  5. M. Napoli, R. D. Vita, I. Immediata, P. Longo, and G. Guerra, Polyethylene waxes by metallocenes. Polym. Adv. Technol., 22, 458-462 (2011).
  6. S. K. Singh, S. P. Tambe, A. B. Samui, V. S. Raja, and D. Kumar, Maleic acid grafted low density polyethylene for thermally sprayable anticorrosive coatings, Prog. Org. Coat., 22, 20-26 (2006).
  7. N. Villarreal, J. M. Pastor, R. Perera, C. Rosales, and J. C. Merino, Use of the raman-active longitudinal acoustic mode in the characterization of reactively extruded polyethylenes, Macromol. Chem. Phys., 203, 238-244 (2002). https://doi.org/10.1002/1521-3935(20020101)203:1<238::AID-MACP238>3.0.CO;2-8
  8. G. Moad, The synthesis of polyolefin graft copolymers by reactive extrusion, Prog. Polym. Sci., 24, 81-142 (1999). https://doi.org/10.1016/S0079-6700(98)00017-3
  9. L. Robert and R. Pierce, The Printing Ink Manual, Springer Science+Business B.V., Netherlands (2012).
  10. H. J. Paik, S. G. Gaynor, and K. Matyjaszewski, Synthesis and characterization of graft copolymers of poly(vinyl chloride) with styrene and (meth)acrylates by atom transfer radical polymerization, Macromol. Rapid Commun., 19, 47-52 (1998). https://doi.org/10.1002/(SICI)1521-3927(19980101)19:1<47::AID-MARC47>3.0.CO;2-Q
  11. ASTM D1986-14, Standard Test Method for Determining the Apparent Viscosity of Polyethylene Wax.
  12. ASTM D36-14, Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus).
  13. ASTM D1321-16a, Standard Test Method for Needle Penetration of Petroleum Waxes.
  14. ISO 13320:2009, Particle size analysis - Laser diffraction methods (2009).
  15. D. Lerche, Dispersion stability and particle characterization by sedimentation kinetics in a centrifugal field, J. Dispers. Sci. Technol., 5, 699-709 (2002).
  16. T. Sobisch, D. Lerche, and S. Kuchler, Stability analyser Lumifuge 116 for rapid evaluation of emulsion stability and demulsifier selection, Chem. Preprint Arch., 6, 195-201 (2002).
  17. X. Y. Hua and M. J. Rosen, Synergism in binary mixtures of surfactants: I. theoretical analysis, J. Colloid Interface Sci., 90, 212-219 (1982). https://doi.org/10.1016/0021-9797(82)90414-3
  18. M. J. Rosen and X. Y. Hua, Synergism in binary mixtures of surfactants: II. some experimental data, J. Am. Oil Chem. Soc., 59, 582-585 (1982). https://doi.org/10.1007/BF02636329
  19. M. J. Rosen and B. Y. Zhu, Synergism in binary mixtures of surfactants: III. Betaine-containing systems, J. Colloid Interface Sci., 99, 427-434 (1984). https://doi.org/10.1016/0021-9797(84)90129-2
  20. B. Y. Zhu and M. J. Rosen, Synergism in binary mixtures of surfactants: IV. Effectiveness of surface tension reduction, J. Colloid Interface Sci., 99, 435-442 (1984). https://doi.org/10.1016/0021-9797(84)90130-9
  21. M. J. Rosen, Surfactants and Interfacial Phenomena, 2nd Ed., 393-419, John Wiley & Sons, New York, USA (1989).
  22. M. J. Rosen, Molecular interaction and synergism in binary mixtures of surfactants, ACS Symp. Ser., 311, 144-162 (1986).
  23. M. J. Rosen, Synergism in mixtures containing zwitterionic surfactants, Langmuir, 7, 885-888 (1991). https://doi.org/10.1021/la00053a012
  24. F. Jost, H. Leiter, and M. Schwuger, Synergisms in binary surfactant mixtures, J. Colloid Polym. Sci., 266, 554-561 (1988). https://doi.org/10.1007/BF01420767
  25. E. H. Lucassen-Reynders, J. Lucassen, and D. J. Giles, Surface and bulk properties of mixed anionic/cationic surfactant systems i. equilibrium surface tensions, J. Colloid Interface Sci., 81, 150-157 (1981). https://doi.org/10.1016/0021-9797(81)90312-X
  26. S. K. Lee, J. W. Han, B. H. Kim, P. G. Shin, S. K. Park, and J. C. Lim, Solubilization of sulfur compounds in the diesel oil by nonionic surfactants, J. Korean Ind. Eng. Chem., 10, 537-542 (1999).
  27. M. J. Bae and J. C. Lim, Solubilization mechanism of n-octane by polymeric nonionic surfactant solution, J. Korean Ind. Eng. Chem., 20, 15-20 (2009).