• 제목/요약/키워드: greenhouse production

검색결과 756건 처리시간 0.027초

전과정평가를 통한 마늘의 탄소배출량 산정연구 (Study of Garlic's Carbon Footprint though LCA)

  • 윤성이;김영란;김태호;박진현;안성우
    • 한국유기농업학회지
    • /
    • 제20권2호
    • /
    • pp.161-172
    • /
    • 2012
  • This study was carried out to estimate carbon footprint and to establish of LCA of garlic production system. We have case study in cultivate garlic 1 kg calculate in carbon footprint. LCA carried out to estimate carbon footprint and to establish of LCI (life cycle inventory) database of garlic production system. The data is from Research of Farmer's income in 2010 (RDA, 2011), and used Pass (5.0.0) program. The value of fertilizer, amount of pesticide input were shown the environmental effect and direct emission. Carbon footprint in agriculture guarantees the choice right the consumer to choose the lower carbon goods. Its can make to strengthen of agriculture and food industry's reduction effort of $CO_2$. Nowadays consumer requests food's safety and environment friendly process. Carbon footprint also needs consumer's relief and incentives.

Effect of Activated Carbon on Growth of Agastache rugosa in Greenhouse

  • Choi Seong-Kyu;Park Yeong-Tyae;Yang Deok-Chun
    • Plant Resources
    • /
    • 제8권2호
    • /
    • pp.171-174
    • /
    • 2005
  • This study was conducted to investigate the effect of activated carbon on leaf and stem production of Agastache rugosa as affected by different amounts of activated carbon. The results obtained are summarized as follows. Growth characteristics including plant height and leaf length were the highest when activated carbon added with $10\%$, suggesting that optimum amount of activated carbon was ranged from 10 to $20\%$. Growth and enlargement of the root were improved by $10\%$ AC. Activated carbon can be utilized as a soil conditioner in agricultural crop areas.

  • PDF

Systemic Infection of Maize, Sorghum, Rice, and Beet Seedlings with Fumonisin-Producing and Nonproducing Fusarium verticillioides Strains

  • Dastjerdi, Raana;Karlovsky, Petr
    • The Plant Pathology Journal
    • /
    • 제31권4호
    • /
    • pp.334-342
    • /
    • 2015
  • Two fumonisin-nonproducing strains of Fusarium verticillioides and their fumonisin producing progenitors were tested for aggressiveness toward maize, sorghum, rice, and beetroot seedlings grown under greenhouse conditions. None of the plants showed obvious disease symptoms after root dip inoculation. Fungal biomass was determined by species-specific real-time PCR. No significant (P = 0.05) differences in systemic colonization were detected between the wild type strains and mutants not producing fumonisins. F. verticillioides was not detected in any of the non-inoculated control plants. The fungus grew from roots to the first two internodes/leaves of maize, rice and beet regardless of fumonisin production. The systemic growth of F. verticillioides in sorghum was limited. The results showed that fumonisin production was not required for the infection of roots of maize, rice and beet by F. verticillioides.

Growth characteristics of chrysanthemum according to planting density

  • Chung, Sun-Ok;Kim, Yong-Joo;Lee, Kyu-Ho;Lee, Cheol-Hwi;Noh, Hyun-Kwon
    • 농업과학연구
    • /
    • 제44권4호
    • /
    • pp.604-612
    • /
    • 2017
  • In this study, the effects of planting density on the growth of chrysanthemum in a greenhouse were evaluated on two popular varieties (i.e., Sinma and Moonlight). Planting density treatments were as follows: 1) $12cm{\times}12cm$, 2) $6cm{\times}12cm$, 3) $6cm{\times}12cm$ with one-cell vacant, and 4) $6cm{\times}12cm$ with two-cell vacant. Size of each treatments indicate one chrysanthemum was planted in that sized cell that was rectangular shaped field and these treatments were located in a line. Moreover, "one and two-cell vacant" means that it makes middle point of the field empty, offers beside chrysanthemum larger spaces to grow. For the Sinma variety, the results of growth and flowering characteristics at the harvesting stage showed that leaf number, leaf length, flower length, and leaf area were highest when the crop was planted at the $12cm{\times}12cm$ density, and the next preferable density was $6cm{\times}12cm$ with one-cell vacant. For the Moonlight variety, the results showed that stalk height and diameter, leaf number and length, flower length, leaf area, and flower number were highest at the $12cm{\times}12cm$ planting density. For Sinma, ratios of marketable production were 87.5% and 83.3% for the $12cm{\times}12cm$ and $6cm{\times}12cm$ with two-cell vacant, respectively. For Moonlight, ratios were 88.0% and 84.3% for the $12cm{\times}12cm$ and $6cm{\times}12cm$ with two-cell vacant.

농작물 육성에 필요한 환경 자동제어 시스템 (Automatic Control System for Cultivation Environment of Crops)

  • 안우영;이현창
    • 한국정보통신학회논문지
    • /
    • 제20권11호
    • /
    • pp.2167-2171
    • /
    • 2016
  • 농작물의 재배 목적이 생산량의 목적에서 품질향상으로 변화되어져 왔다. 실외 환경을 농작물 재배에 대해 영향을 줄이기 위해 농가들이 비닐하우스 재배 방식을 많이 사용하고 있다. 그 가운데, 버섯은 고영양이면서, 풍부한 비타민을 함유하고 있는 건강식품으로서 많은 관심을 받고 있다. 이로 인해 버섯 산업은 새로운 유망산업으로 떠오르고 있다. 이를 위해 버섯에 대한 재배방식은 단순한 수공 재배모드에서 자동화된 공장화된 재배모드로 발전해오고 있다. 이와 같이 버섯의 생산 과정에서 요구되는 생육환경제어는 버섯의 산출량 및 품질에 직접적인 영향을 미친다. 이로 인해 농가 비닐하우스 안에 온도를 수시 조정할 필요가 있다. 지금은 대부분 농가들 여전히 온도계로 온도를 측정하고 있다. 본 논문에서는 이런 문제를 해결하기 위해 자동 온도 조절 환경 구축해서 온도를 실시간으로 측정할 수 있으며 농가 생산효율 향상시키고 불필요한 노동력을 감소시킬 수 있다.

Entomological approach to the impact of ionophore-feed additives on greenhouse gas emissions from pasture land in cattle

  • Takahashi, Junichi;Iwasa, Mitsuhiro
    • Journal of Animal Science and Technology
    • /
    • 제63권1호
    • /
    • pp.16-24
    • /
    • 2021
  • The suppressive effect of monensin as an ionophore-feed additive on enteric methane (CH4) emission and renewable methanogenesis were evaluated. To clarify the suppressive effect of monensin a respiratory trial with head cage was performed using Holstein-Friesian steers. Steers were offered high concentrate diets (80% concentrate and 20% hay) ad libitum with or without monensin, galacto-oligosaccharides (GOS) or L-cysteine. Steers that received monensin containing diet had significantly (p < 0.01) lower enteric CH4 emissions as well as those that received GOS containing diet (p < 0.05) compared to steers fed control diets. Thermophilic digesters at 55℃ that received manure from steers fed on monensin diets had a delay in the initial CH4 production. Monensin is a strong inhibitor of enteric methanogenesis, but has a negative impact on biogas energy production at short retention times. Effects of the activity of coprophagous insects on CH4 and nitrous oxide (N2O) emissions from cattle dung pats were assessed in anaerobic in vitro continuous gas quantification system modified to aerobic quantification device. The CH4 emission from dungs with adults of Caccobius jessoensis Harold (dung beetle) and the larvae of the fly Neomyia cornicina (Fabricius) were compared with that from control dung without insect. The cumulative CH4 emission rate from dung with dung insects decreased at 42.2% in dung beetles and 77.8% in fly larvae compared to that from control dung without insects. However, the cumulative N2O emission rate increased 23.4% in dung beetles even though it reduced 88.6% in fly larvae compared to dung without coprophagous insects. It was suggested that the antibacterial efficacy of ionophores supplemented as a growth promoter still continued even in the digested slurry, consequently, possible environmental contamination with the antibiotics might be active to put the negative impact to land ecosystem involved in greenhouse gas mitigation when the digested slurry was applied to the fields as liquid manure.

탄소 제로화를 위한 혁신 기술 연구: 건설 및 콘크리트 산업에서의 이산화탄소 저감 방안 동향 (Research on Innovation Technologies for Zero Carbon: Carbon Dioxide Reduction in Construction and Concrete Industries)

  • 김주현;박정준;김종규
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.549-563
    • /
    • 2022
  • Continuous global warming is causing ecosystem destruction and direct damage to human life. The main cause of global warming is greenhouse gases, which account for more than 90 % of carbon dioxide. The leaders of each country signed the Paris Agreement at the United Nations Convention on Climate Change (UNFCCC) to reduce greenhouse gas emissions. Currently, the total amount of CO2 emitted from South Korea is 664.7 million tons as of 2018, ranking eighth in the world. 37 % of South Korea's total CO2 emissions come from the construction & building field, especially the cement production, which is a construction material. Carbon reduction technologies can be largely divided into four types: carbon reduction (CC), carbon reduction and storage technology (CCS), carbon reduction and utilization technology (CCU), and carbon reduction, storage and utilization technology (CCUS). Overseas, CCUS technology is mainly applied to reduce and store CO2 emitted from construction and construction field. A technology for permanently storing CO2 through mineralization by capturing CO2 and utilizing CO2 into a cement production process was developed, and this technology is applied to the entire cement industry. However, the development of CCUS technology applicable to the cement industry is still insignificant in South Korea. In this study, carbon dioxide reduction technology and methods for reducing carbon dioxide emitted during the cement manufacturing process, which is the main component of concrete mainly used in civil engineering construction, were investigated. Overseas, it has reached the commercialization stage beyond the demonstration stage as a way to reduce carbon dioxide by vomiting carbonation reactions. Accordingly, if carbon dioxide reduction plan technology generated during cement manufacturing is developed based on domestic technology differentiated from foreign technology, it is expected to contribute one more step to the carbon neutrality policy.

시설재배지 토양에서 유기자재 투입이 염류활성도에 미치는 영향 (Effect of Organic Residue Incorporation on Salt Activity in Greenhouse Soil)

  • 이슬비;이창훈;홍창오;김상윤;이용복;김필주
    • 한국환경농학회지
    • /
    • 제28권4호
    • /
    • pp.397-402
    • /
    • 2009
  • In Korea, salt stress is one of the major problems limiting crop production and eco-environmental quality in greenhouse soil. The objective of this study was to evaluate the effectiveness of organic residues (Chinese milk vetch, maize stalk, rice straw, and rye straw) for reducing salt activity in greenhouse soil. Organic residues was incorporated with salt-accumulated soil (EC, 3.0 dS $m^{-1}$) at the rate of 5% (wt $wt^{-1}$) and the changes of electrical conductivity (EC) was determined weekly for 8 weeks under incubation condition at $30^{\circ}C$. The EC, microbial biomass carbon (MBC), and water soluble ions in soil was strongly affected by C/N ratio of organic residues. After 8 weeks incubation, the concentration of water soluble $NO_3{^-},\;Ca^{2+}$, and $Mg^{2+}$ was significantly decreased in organic residues having high C/N ratio (maize stalk, rice straw, and rye straw) incorporated soil compared to organic residues having lower C/N ratio (Chinese milk vetch) incorporated soil. The EC value in Chinese milk vetch incorporated soil was higher than control treatment. In contrast, maize stalk, rice straw, and rye straw amended soil was highly decreased the EC value compared to control and Chinese milk vetch applied soil after 4 weeks incubation. Our results indicated that incorporation of organic residues having high C/N ratio (>30) could reduce salt activity resulting from reducing concentration of water soluble ions.

Root Colonization and ISR-mediated Anthracnose Disease Control in Cucumber by Strain Enterobacter asburiae B1

  • Bharathkumar, S.;Park, Jin-Woo;Han, Ji-Hee;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.333-343
    • /
    • 2009
  • Here, we show that an endophytic bacterial strain, Enterobacter asburiae B1 exhibits the ability to elicit ISR in cucumber, tobacco and Arabidopsis thaliana. This indicates that strain B1 has a widespread ability to elicit ISR on various host plants. In this study, E. asburiae strain B1 did not show antifungal activity against tested major fungal pathogens, Colletotrichum orbiculare, Botrytis cinerea, Phytophthora capsici, Rhizoctonia solani, and Fusarium oxysporum. Moreover, the siderophore production by E. asburiae strain B1 was observed under in vitro condition. In greenhouse experiments, the root treatment of strain B1 significantly reduced disease severity of cucumber anthracnose caused by fungal pathogen C. orbiculare compared to nontreated control plants. By root treatment of strain B1 more than 50% disease control against anthracnose on cucumber was observed in all greenhouse experiments. Simultaneously, under the greenhouse condition, the soil drench of strain B1 and a chemical inducer benzothiadiazole (BTH) to tobacco plants induced GUS activity which is linked with activation of PR promoter gene. Furthermore, in Arabidopsis thaliana plants the soil drench of strain B1 induced the defense gene expression of PR1 and PDF1.2 related to salicylic acid and jasmonic acid/ethylene signaling pathways, respectively. In this study, for the main focus on root colonization by strain B1 associated with defense responses, bacterial cells of strain B1 was tagged with the gfp gene encoding the green fluorescent protein in order to determine the colonization pattern of strain B1 in cucumber. The gfp-tagged B1 cells were found on root surface and internal colonization in root, stem, and leaf. In addition to this, the scanning electron microscopy observation showed that E. asburiae strain B1 was able to colonized cucumber root surface.

기후변화가 습지 내 온실기체 발생과 미생물 군집구조에 미치는 영향 (Climate Effects on Greenhouse Gas Emissions and Microbial Communities in Wetlands)

  • 김선영;강호정
    • 한국농림기상학회지
    • /
    • 제9권3호
    • /
    • pp.161-169
    • /
    • 2007
  • 대기 중 이산화탄소 농도 및 온도 증가와 강수 패턴 변화에 따른 가뭄 정도 및 횟수의 변화는 습지에서 발생하는 온실가스의 양에 영향을 미칠 수 있다. 습지에 존재하는 다양한 미생물 군집(탈질세균 및 메탄생성세균) 이 온실가스 생성에 있어 중요한 역할을 감당한다. 본 논문은 지금까지 전지구적 기후변화가 습지에서의 온실가스 발생과 관련 미생물 군집에 미치는 영향에 관한 다양한 연구를 정리하는 데 그 목적이 있다. 대기 중 이산화탄소 농도와 기온 증가는 일반적으로 온실가스 생성을 증가시켰다. 반면, 가뭄의 영향은 기체 종류와 가뭄 정도에 따라 다양한 결과가 보고되었다. 기후변화에 따른 미생물 군집의 변화는 습지시스템에서 보고된 연구의 부족으로 인해 특정한 결론을 도출할 수 없었다. 본 총설은 습지에서 미생물을 매개로 한 반응을 연구함에 있어 관련 미생물 군집구조의 특성을 파악하고, 다양한 환경인자에 대한 그들의 반응을 알아내는 것과 미생물 반응과 군집구조간의 상관 관계를 도출하는 것의 중요성을 제안한다. 이는 향후 전지구적 기후 변화가 습지의 생태학적 기능에 미칠 영향을 더 잘 이해하고 예측하는데 있어 매우 중요할 것이라 사료된다.